Metamath Proof Explorer


Theorem matplusg2

Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses matplusg2.a A = N Mat R
matplusg2.b B = Base A
matplusg2.p ˙ = + A
matplusg2.q + ˙ = + R
Assertion matplusg2 X B Y B X ˙ Y = X + ˙ f Y

Proof

Step Hyp Ref Expression
1 matplusg2.a A = N Mat R
2 matplusg2.b B = Base A
3 matplusg2.p ˙ = + A
4 matplusg2.q + ˙ = + R
5 1 2 matrcl X B N Fin R V
6 5 adantr X B Y B N Fin R V
7 eqid R freeLMod N × N = R freeLMod N × N
8 1 7 matplusg N Fin R V + R freeLMod N × N = + A
9 8 3 eqtr4di N Fin R V + R freeLMod N × N = ˙
10 6 9 syl X B Y B + R freeLMod N × N = ˙
11 10 oveqd X B Y B X + R freeLMod N × N Y = X ˙ Y
12 eqid Base R freeLMod N × N = Base R freeLMod N × N
13 6 simprd X B Y B R V
14 6 simpld X B Y B N Fin
15 xpfi N Fin N Fin N × N Fin
16 14 14 15 syl2anc X B Y B N × N Fin
17 simpl X B Y B X B
18 1 7 matbas N Fin R V Base R freeLMod N × N = Base A
19 6 18 syl X B Y B Base R freeLMod N × N = Base A
20 19 2 eqtr4di X B Y B Base R freeLMod N × N = B
21 17 20 eleqtrrd X B Y B X Base R freeLMod N × N
22 simpr X B Y B Y B
23 22 20 eleqtrrd X B Y B Y Base R freeLMod N × N
24 eqid + R freeLMod N × N = + R freeLMod N × N
25 7 12 13 16 21 23 4 24 frlmplusgval X B Y B X + R freeLMod N × N Y = X + ˙ f Y
26 11 25 eqtr3d X B Y B X ˙ Y = X + ˙ f Y