Metamath Proof Explorer


Theorem matrcl

Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses matrcl.a A = N Mat R
matrcl.b B = Base A
Assertion matrcl X B N Fin R V

Proof

Step Hyp Ref Expression
1 matrcl.a A = N Mat R
2 matrcl.b B = Base A
3 n0i X B ¬ B =
4 df-mat Mat = a Fin , b V b freeLMod a × a sSet ndx b maMul a a a
5 4 mpondm0 ¬ N Fin R V N Mat R =
6 1 5 syl5eq ¬ N Fin R V A =
7 6 fveq2d ¬ N Fin R V Base A = Base
8 base0 = Base
9 7 2 8 3eqtr4g ¬ N Fin R V B =
10 3 9 nsyl2 X B N Fin R V