Step |
Hyp |
Ref |
Expression |
1 |
|
matassa.a |
|
2 |
|
eqid |
|
3 |
1 2
|
matbas2 |
|
4 |
|
eqidd |
|
5 |
|
eqid |
|
6 |
1 5
|
matmulr |
|
7 |
1
|
matgrp |
|
8 |
|
simp1r |
|
9 |
|
simp1l |
|
10 |
|
simp2 |
|
11 |
|
simp3 |
|
12 |
2 8 5 9 9 9 10 11
|
mamucl |
|
13 |
|
simplr |
|
14 |
|
simpll |
|
15 |
|
simpr1 |
|
16 |
|
simpr2 |
|
17 |
|
simpr3 |
|
18 |
2 13 14 14 14 14 15 16 17 5 5 5 5
|
mamuass |
|
19 |
|
eqid |
|
20 |
2 13 5 14 14 14 19 15 16 17
|
mamudir |
|
21 |
3
|
adantr |
|
22 |
16 21
|
eleqtrd |
|
23 |
17 21
|
eleqtrd |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
1 24 25 19
|
matplusg2 |
|
27 |
22 23 26
|
syl2anc |
|
28 |
27
|
oveq2d |
|
29 |
2 13 5 14 14 14 15 16
|
mamucl |
|
30 |
29 21
|
eleqtrd |
|
31 |
2 13 5 14 14 14 15 17
|
mamucl |
|
32 |
31 21
|
eleqtrd |
|
33 |
1 24 25 19
|
matplusg2 |
|
34 |
30 32 33
|
syl2anc |
|
35 |
20 28 34
|
3eqtr4d |
|
36 |
2 13 5 14 14 14 19 15 16 17
|
mamudi |
|
37 |
15 21
|
eleqtrd |
|
38 |
1 24 25 19
|
matplusg2 |
|
39 |
37 22 38
|
syl2anc |
|
40 |
39
|
oveq1d |
|
41 |
2 13 5 14 14 14 16 17
|
mamucl |
|
42 |
41 21
|
eleqtrd |
|
43 |
1 24 25 19
|
matplusg2 |
|
44 |
32 42 43
|
syl2anc |
|
45 |
36 40 44
|
3eqtr4d |
|
46 |
|
simpr |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
simpl |
|
51 |
2 46 47 48 49 50
|
mamumat1cl |
|
52 |
|
simplr |
|
53 |
|
simpll |
|
54 |
|
simpr |
|
55 |
2 52 47 48 49 53 53 5 54
|
mamulid |
|
56 |
2 52 47 48 49 53 53 5 54
|
mamurid |
|
57 |
3 4 6 7 12 18 35 45 51 55 56
|
isringd |
|