| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matassa.a |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
matbas2 |
|
| 4 |
|
eqidd |
|
| 5 |
|
eqid |
|
| 6 |
1 5
|
matmulr |
|
| 7 |
1
|
matgrp |
|
| 8 |
|
simp1r |
|
| 9 |
|
simp1l |
|
| 10 |
|
simp2 |
|
| 11 |
|
simp3 |
|
| 12 |
2 8 5 9 9 9 10 11
|
mamucl |
|
| 13 |
|
simplr |
|
| 14 |
|
simpll |
|
| 15 |
|
simpr1 |
|
| 16 |
|
simpr2 |
|
| 17 |
|
simpr3 |
|
| 18 |
2 13 14 14 14 14 15 16 17 5 5 5 5
|
mamuass |
|
| 19 |
|
eqid |
|
| 20 |
2 13 5 14 14 14 19 15 16 17
|
mamudir |
|
| 21 |
3
|
adantr |
|
| 22 |
16 21
|
eleqtrd |
|
| 23 |
17 21
|
eleqtrd |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
1 24 25 19
|
matplusg2 |
|
| 27 |
22 23 26
|
syl2anc |
|
| 28 |
27
|
oveq2d |
|
| 29 |
2 13 5 14 14 14 15 16
|
mamucl |
|
| 30 |
29 21
|
eleqtrd |
|
| 31 |
2 13 5 14 14 14 15 17
|
mamucl |
|
| 32 |
31 21
|
eleqtrd |
|
| 33 |
1 24 25 19
|
matplusg2 |
|
| 34 |
30 32 33
|
syl2anc |
|
| 35 |
20 28 34
|
3eqtr4d |
|
| 36 |
2 13 5 14 14 14 19 15 16 17
|
mamudi |
|
| 37 |
15 21
|
eleqtrd |
|
| 38 |
1 24 25 19
|
matplusg2 |
|
| 39 |
37 22 38
|
syl2anc |
|
| 40 |
39
|
oveq1d |
|
| 41 |
2 13 5 14 14 14 16 17
|
mamucl |
|
| 42 |
41 21
|
eleqtrd |
|
| 43 |
1 24 25 19
|
matplusg2 |
|
| 44 |
32 42 43
|
syl2anc |
|
| 45 |
36 40 44
|
3eqtr4d |
|
| 46 |
|
simpr |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
|
simpl |
|
| 51 |
2 46 47 48 49 50
|
mamumat1cl |
|
| 52 |
|
simplr |
|
| 53 |
|
simpll |
|
| 54 |
|
simpr |
|
| 55 |
2 52 47 48 49 53 53 5 54
|
mamulid |
|
| 56 |
2 52 47 48 49 53 53 5 54
|
mamurid |
|
| 57 |
3 4 6 7 12 18 35 45 51 55 56
|
isringd |
|