Metamath Proof Explorer


Theorem matring

Description: Existence of the matrix ring, see also the statement in Lang p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis matassa.a A = N Mat R
Assertion matring N Fin R Ring A Ring

Proof

Step Hyp Ref Expression
1 matassa.a A = N Mat R
2 eqid Base R = Base R
3 1 2 matbas2 N Fin R Ring Base R N × N = Base A
4 eqidd N Fin R Ring + A = + A
5 eqid R maMul N N N = R maMul N N N
6 1 5 matmulr N Fin R Ring R maMul N N N = A
7 1 matgrp N Fin R Ring A Grp
8 simp1r N Fin R Ring x Base R N × N y Base R N × N R Ring
9 simp1l N Fin R Ring x Base R N × N y Base R N × N N Fin
10 simp2 N Fin R Ring x Base R N × N y Base R N × N x Base R N × N
11 simp3 N Fin R Ring x Base R N × N y Base R N × N y Base R N × N
12 2 8 5 9 9 9 10 11 mamucl N Fin R Ring x Base R N × N y Base R N × N x R maMul N N N y Base R N × N
13 simplr N Fin R Ring x Base R N × N y Base R N × N z Base R N × N R Ring
14 simpll N Fin R Ring x Base R N × N y Base R N × N z Base R N × N N Fin
15 simpr1 N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x Base R N × N
16 simpr2 N Fin R Ring x Base R N × N y Base R N × N z Base R N × N y Base R N × N
17 simpr3 N Fin R Ring x Base R N × N y Base R N × N z Base R N × N z Base R N × N
18 2 13 14 14 14 14 15 16 17 5 5 5 5 mamuass N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y R maMul N N N z = x R maMul N N N y R maMul N N N z
19 eqid + R = + R
20 2 13 5 14 14 14 19 15 16 17 mamudir N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y + R f z = x R maMul N N N y + R f x R maMul N N N z
21 3 adantr N Fin R Ring x Base R N × N y Base R N × N z Base R N × N Base R N × N = Base A
22 16 21 eleqtrd N Fin R Ring x Base R N × N y Base R N × N z Base R N × N y Base A
23 17 21 eleqtrd N Fin R Ring x Base R N × N y Base R N × N z Base R N × N z Base A
24 eqid Base A = Base A
25 eqid + A = + A
26 1 24 25 19 matplusg2 y Base A z Base A y + A z = y + R f z
27 22 23 26 syl2anc N Fin R Ring x Base R N × N y Base R N × N z Base R N × N y + A z = y + R f z
28 27 oveq2d N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y + A z = x R maMul N N N y + R f z
29 2 13 5 14 14 14 15 16 mamucl N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y Base R N × N
30 29 21 eleqtrd N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y Base A
31 2 13 5 14 14 14 15 17 mamucl N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N z Base R N × N
32 31 21 eleqtrd N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N z Base A
33 1 24 25 19 matplusg2 x R maMul N N N y Base A x R maMul N N N z Base A x R maMul N N N y + A x R maMul N N N z = x R maMul N N N y + R f x R maMul N N N z
34 30 32 33 syl2anc N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y + A x R maMul N N N z = x R maMul N N N y + R f x R maMul N N N z
35 20 28 34 3eqtr4d N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N y + A z = x R maMul N N N y + A x R maMul N N N z
36 2 13 5 14 14 14 19 15 16 17 mamudi N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x + R f y R maMul N N N z = x R maMul N N N z + R f y R maMul N N N z
37 15 21 eleqtrd N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x Base A
38 1 24 25 19 matplusg2 x Base A y Base A x + A y = x + R f y
39 37 22 38 syl2anc N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x + A y = x + R f y
40 39 oveq1d N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x + A y R maMul N N N z = x + R f y R maMul N N N z
41 2 13 5 14 14 14 16 17 mamucl N Fin R Ring x Base R N × N y Base R N × N z Base R N × N y R maMul N N N z Base R N × N
42 41 21 eleqtrd N Fin R Ring x Base R N × N y Base R N × N z Base R N × N y R maMul N N N z Base A
43 1 24 25 19 matplusg2 x R maMul N N N z Base A y R maMul N N N z Base A x R maMul N N N z + A y R maMul N N N z = x R maMul N N N z + R f y R maMul N N N z
44 32 42 43 syl2anc N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x R maMul N N N z + A y R maMul N N N z = x R maMul N N N z + R f y R maMul N N N z
45 36 40 44 3eqtr4d N Fin R Ring x Base R N × N y Base R N × N z Base R N × N x + A y R maMul N N N z = x R maMul N N N z + A y R maMul N N N z
46 simpr N Fin R Ring R Ring
47 eqid 1 R = 1 R
48 eqid 0 R = 0 R
49 eqid a N , b N if a = b 1 R 0 R = a N , b N if a = b 1 R 0 R
50 simpl N Fin R Ring N Fin
51 2 46 47 48 49 50 mamumat1cl N Fin R Ring a N , b N if a = b 1 R 0 R Base R N × N
52 simplr N Fin R Ring x Base R N × N R Ring
53 simpll N Fin R Ring x Base R N × N N Fin
54 simpr N Fin R Ring x Base R N × N x Base R N × N
55 2 52 47 48 49 53 53 5 54 mamulid N Fin R Ring x Base R N × N a N , b N if a = b 1 R 0 R R maMul N N N x = x
56 2 52 47 48 49 53 53 5 54 mamurid N Fin R Ring x Base R N × N x R maMul N N N a N , b N if a = b 1 R 0 R = x
57 3 4 6 7 12 18 35 45 51 55 56 isringd N Fin R Ring A Ring