Metamath Proof Explorer


Theorem matsc

Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018)

Ref Expression
Hypotheses matsc.a A = N Mat R
matsc.k K = Base R
matsc.m · ˙ = A
matsc.z 0 ˙ = 0 R
Assertion matsc N Fin R Ring L K L · ˙ 1 A = i N , j N if i = j L 0 ˙

Proof

Step Hyp Ref Expression
1 matsc.a A = N Mat R
2 matsc.k K = Base R
3 matsc.m · ˙ = A
4 matsc.z 0 ˙ = 0 R
5 simp3 N Fin R Ring L K L K
6 3simpa N Fin R Ring L K N Fin R Ring
7 1 matring N Fin R Ring A Ring
8 eqid Base A = Base A
9 eqid 1 A = 1 A
10 8 9 ringidcl A Ring 1 A Base A
11 6 7 10 3syl N Fin R Ring L K 1 A Base A
12 eqid R = R
13 eqid N × N = N × N
14 1 8 2 3 12 13 matvsca2 L K 1 A Base A L · ˙ 1 A = N × N × L R f 1 A
15 5 11 14 syl2anc N Fin R Ring L K L · ˙ 1 A = N × N × L R f 1 A
16 simp1 N Fin R Ring L K N Fin
17 simp13 N Fin R Ring L K i N j N L K
18 fvex 1 R V
19 4 fvexi 0 ˙ V
20 18 19 ifex if i = j 1 R 0 ˙ V
21 20 a1i N Fin R Ring L K i N j N if i = j 1 R 0 ˙ V
22 fconstmpo N × N × L = i N , j N L
23 22 a1i N Fin R Ring L K N × N × L = i N , j N L
24 eqid 1 R = 1 R
25 1 24 4 mat1 N Fin R Ring 1 A = i N , j N if i = j 1 R 0 ˙
26 25 3adant3 N Fin R Ring L K 1 A = i N , j N if i = j 1 R 0 ˙
27 16 16 17 21 23 26 offval22 N Fin R Ring L K N × N × L R f 1 A = i N , j N L R if i = j 1 R 0 ˙
28 ovif2 L R if i = j 1 R 0 ˙ = if i = j L R 1 R L R 0 ˙
29 2 12 24 ringridm R Ring L K L R 1 R = L
30 29 3adant1 N Fin R Ring L K L R 1 R = L
31 2 12 4 ringrz R Ring L K L R 0 ˙ = 0 ˙
32 31 3adant1 N Fin R Ring L K L R 0 ˙ = 0 ˙
33 30 32 ifeq12d N Fin R Ring L K if i = j L R 1 R L R 0 ˙ = if i = j L 0 ˙
34 28 33 syl5eq N Fin R Ring L K L R if i = j 1 R 0 ˙ = if i = j L 0 ˙
35 34 mpoeq3dv N Fin R Ring L K i N , j N L R if i = j 1 R 0 ˙ = i N , j N if i = j L 0 ˙
36 15 27 35 3eqtrd N Fin R Ring L K L · ˙ 1 A = i N , j N if i = j L 0 ˙