Metamath Proof Explorer


Theorem matsca

Description: The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matbas.a A = N Mat R
matbas.g G = R freeLMod N × N
Assertion matsca N Fin R V Scalar G = Scalar A

Proof

Step Hyp Ref Expression
1 matbas.a A = N Mat R
2 matbas.g G = R freeLMod N × N
3 scaid Scalar = Slot Scalar ndx
4 3re 3
5 3lt5 3 < 5
6 4 5 gtneii 5 3
7 scandx Scalar ndx = 5
8 mulrndx ndx = 3
9 7 8 neeq12i Scalar ndx ndx 5 3
10 6 9 mpbir Scalar ndx ndx
11 3 10 setsnid Scalar G = Scalar G sSet ndx R maMul N N N
12 eqid R maMul N N N = R maMul N N N
13 1 2 12 matval N Fin R V A = G sSet ndx R maMul N N N
14 13 fveq2d N Fin R V Scalar A = Scalar G sSet ndx R maMul N N N
15 11 14 eqtr4id N Fin R V Scalar G = Scalar A