Metamath Proof Explorer


Theorem matsubg

Description: The matrix ring has the same addition as its underlying group. (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses matsubg.a A = N Mat R
matsubg.g G = R freeLMod N × N
Assertion matsubg N Fin R V - G = - A

Proof

Step Hyp Ref Expression
1 matsubg.a A = N Mat R
2 matsubg.g G = R freeLMod N × N
3 1 2 matbas N Fin R V Base G = Base A
4 1 2 matplusg N Fin R V + G = + A
5 3 4 grpsubpropd N Fin R V - G = - A