Metamath Proof Explorer


Theorem mattpos1

Description: The transposition of the identity matrix is the identity matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses mattpos1.a A = N Mat R
mattpos1.o 1 ˙ = 1 A
Assertion mattpos1 N Fin R Ring tpos 1 ˙ = 1 ˙

Proof

Step Hyp Ref Expression
1 mattpos1.a A = N Mat R
2 mattpos1.o 1 ˙ = 1 A
3 eqid i N , j N if i = j 1 R 0 R = i N , j N if i = j 1 R 0 R
4 3 tposmpo tpos i N , j N if i = j 1 R 0 R = j N , i N if i = j 1 R 0 R
5 eqid 1 R = 1 R
6 eqid 0 R = 0 R
7 1 5 6 mat1 N Fin R Ring 1 A = i N , j N if i = j 1 R 0 R
8 7 tposeqd N Fin R Ring tpos 1 A = tpos i N , j N if i = j 1 R 0 R
9 1 5 6 mat1 N Fin R Ring 1 A = j N , i N if j = i 1 R 0 R
10 equcom j = i i = j
11 10 a1i j N i N j = i i = j
12 11 ifbid j N i N if j = i 1 R 0 R = if i = j 1 R 0 R
13 12 mpoeq3ia j N , i N if j = i 1 R 0 R = j N , i N if i = j 1 R 0 R
14 9 13 eqtrdi N Fin R Ring 1 A = j N , i N if i = j 1 R 0 R
15 4 8 14 3eqtr4a N Fin R Ring tpos 1 A = 1 A
16 2 tposeqi tpos 1 ˙ = tpos 1 A
17 15 16 2 3eqtr4g N Fin R Ring tpos 1 ˙ = 1 ˙