Metamath Proof Explorer


Theorem mattposcl

Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses mattposcl.a A = N Mat R
mattposcl.b B = Base A
Assertion mattposcl M B tpos M B

Proof

Step Hyp Ref Expression
1 mattposcl.a A = N Mat R
2 mattposcl.b B = Base A
3 eqid Base R = Base R
4 1 3 2 matbas2i M B M Base R N × N
5 elmapi M Base R N × N M : N × N Base R
6 tposf M : N × N Base R tpos M : N × N Base R
7 4 5 6 3syl M B tpos M : N × N Base R
8 fvex Base R V
9 1 2 matrcl M B N Fin R V
10 9 simpld M B N Fin
11 xpfi N Fin N Fin N × N Fin
12 11 anidms N Fin N × N Fin
13 10 12 syl M B N × N Fin
14 elmapg Base R V N × N Fin tpos M Base R N × N tpos M : N × N Base R
15 8 13 14 sylancr M B tpos M Base R N × N tpos M : N × N Base R
16 7 15 mpbird M B tpos M Base R N × N
17 1 3 matbas2 N Fin R V Base R N × N = Base A
18 9 17 syl M B Base R N × N = Base A
19 18 2 eqtr4di M B Base R N × N = B
20 16 19 eleqtrd M B tpos M B