Metamath Proof Explorer


Theorem mattpostpos

Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018)

Ref Expression
Hypotheses mattposcl.a A = N Mat R
mattposcl.b B = Base A
Assertion mattpostpos M B tpos tpos M = M

Proof

Step Hyp Ref Expression
1 mattposcl.a A = N Mat R
2 mattposcl.b B = Base A
3 eqid Base R = Base R
4 1 3 2 matbas2i M B M Base R N × N
5 elmapi M Base R N × N M : N × N Base R
6 4 5 syl M B M : N × N Base R
7 frel M : N × N Base R Rel M
8 6 7 syl M B Rel M
9 relxp Rel N × N
10 6 fdmd M B dom M = N × N
11 10 releqd M B Rel dom M Rel N × N
12 9 11 mpbiri M B Rel dom M
13 tpostpos2 Rel M Rel dom M tpos tpos M = M
14 8 12 13 syl2anc M B tpos tpos M = M