Metamath Proof Explorer


Theorem matunit

Description: A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses matunit.a A = N Mat R
matunit.d D = N maDet R
matunit.b B = Base A
matunit.u U = Unit A
matunit.v V = Unit R
Assertion matunit R CRing M B M U D M V

Proof

Step Hyp Ref Expression
1 matunit.a A = N Mat R
2 matunit.d D = N maDet R
3 matunit.b B = Base A
4 matunit.u U = Unit A
5 matunit.v V = Unit R
6 eqid Base R = Base R
7 eqid R = R
8 eqid 1 R = 1 R
9 eqid inv r R = inv r R
10 crngring R CRing R Ring
11 10 ad2antrr R CRing M B M U R Ring
12 2 1 3 6 mdetcl R CRing M B D M Base R
13 12 adantr R CRing M B M U D M Base R
14 2 1 3 6 mdetf R CRing D : B Base R
15 14 ad2antrr R CRing M B M U D : B Base R
16 1 3 matrcl M B N Fin R V
17 16 simpld M B N Fin
18 17 ad2antlr R CRing M B M U N Fin
19 1 matring N Fin R Ring A Ring
20 18 11 19 syl2anc R CRing M B M U A Ring
21 eqid inv r A = inv r A
22 4 21 3 ringinvcl A Ring M U inv r A M B
23 20 22 sylancom R CRing M B M U inv r A M B
24 15 23 ffvelrnd R CRing M B M U D inv r A M Base R
25 eqid A = A
26 eqid 1 A = 1 A
27 4 21 25 26 unitrinv A Ring M U M A inv r A M = 1 A
28 20 27 sylancom R CRing M B M U M A inv r A M = 1 A
29 28 fveq2d R CRing M B M U D M A inv r A M = D 1 A
30 simpll R CRing M B M U R CRing
31 simplr R CRing M B M U M B
32 1 3 2 7 25 mdetmul R CRing M B inv r A M B D M A inv r A M = D M R D inv r A M
33 30 31 23 32 syl3anc R CRing M B M U D M A inv r A M = D M R D inv r A M
34 2 1 26 8 mdet1 R CRing N Fin D 1 A = 1 R
35 30 18 34 syl2anc R CRing M B M U D 1 A = 1 R
36 29 33 35 3eqtr3d R CRing M B M U D M R D inv r A M = 1 R
37 4 21 25 26 unitlinv A Ring M U inv r A M A M = 1 A
38 20 37 sylancom R CRing M B M U inv r A M A M = 1 A
39 38 fveq2d R CRing M B M U D inv r A M A M = D 1 A
40 1 3 2 7 25 mdetmul R CRing inv r A M B M B D inv r A M A M = D inv r A M R D M
41 30 23 31 40 syl3anc R CRing M B M U D inv r A M A M = D inv r A M R D M
42 39 41 35 3eqtr3d R CRing M B M U D inv r A M R D M = 1 R
43 6 7 8 5 9 11 13 24 36 42 invrvald R CRing M B M U D M V inv r R D M = D inv r A M
44 43 simpld R CRing M B M U D M V
45 eqid N maAdju R = N maAdju R
46 eqid A = A
47 1 45 2 3 4 5 9 21 46 matinv R CRing M B D M V M U inv r A M = inv r R D M A N maAdju R M
48 47 simpld R CRing M B D M V M U
49 48 3expa R CRing M B D M V M U
50 44 49 impbida R CRing M B M U D M V