Step |
Hyp |
Ref |
Expression |
1 |
|
matunit.a |
|
2 |
|
matunit.d |
|
3 |
|
matunit.b |
|
4 |
|
matunit.u |
|
5 |
|
matunit.v |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
crngring |
|
11 |
10
|
ad2antrr |
|
12 |
2 1 3 6
|
mdetcl |
|
13 |
12
|
adantr |
|
14 |
2 1 3 6
|
mdetf |
|
15 |
14
|
ad2antrr |
|
16 |
1 3
|
matrcl |
|
17 |
16
|
simpld |
|
18 |
17
|
ad2antlr |
|
19 |
1
|
matring |
|
20 |
18 11 19
|
syl2anc |
|
21 |
|
eqid |
|
22 |
4 21 3
|
ringinvcl |
|
23 |
20 22
|
sylancom |
|
24 |
15 23
|
ffvelrnd |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
4 21 25 26
|
unitrinv |
|
28 |
20 27
|
sylancom |
|
29 |
28
|
fveq2d |
|
30 |
|
simpll |
|
31 |
|
simplr |
|
32 |
1 3 2 7 25
|
mdetmul |
|
33 |
30 31 23 32
|
syl3anc |
|
34 |
2 1 26 8
|
mdet1 |
|
35 |
30 18 34
|
syl2anc |
|
36 |
29 33 35
|
3eqtr3d |
|
37 |
4 21 25 26
|
unitlinv |
|
38 |
20 37
|
sylancom |
|
39 |
38
|
fveq2d |
|
40 |
1 3 2 7 25
|
mdetmul |
|
41 |
30 23 31 40
|
syl3anc |
|
42 |
39 41 35
|
3eqtr3d |
|
43 |
6 7 8 5 9 11 13 24 36 42
|
invrvald |
|
44 |
43
|
simpld |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
1 45 2 3 4 5 9 21 46
|
matinv |
|
48 |
47
|
simpld |
|
49 |
48
|
3expa |
|
50 |
44 49
|
impbida |
|