Metamath Proof Explorer


Theorem matunitlindf

Description: A matrix over a field is invertible iff the rows are linearly independent. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion matunitlindf R Field M Base I Mat R M Unit I Mat R curry M LIndF R freeLMod I

Proof

Step Hyp Ref Expression
1 fvoveq1 I = Base I Mat R = Base Mat R
2 mat0dimbas0 R Field Base Mat R =
3 1 2 sylan9eq I = R Field Base I Mat R =
4 3 eleq2d I = R Field M Base I Mat R M
5 elsni M M =
6 4 5 syl6bi I = R Field M Base I Mat R M =
7 6 imdistanda I = R Field M Base I Mat R R Field M =
8 7 impcom R Field M Base I Mat R I = R Field M =
9 isfld R Field R DivRing R CRing
10 9 simplbi R Field R DivRing
11 drngring R DivRing R Ring
12 eqid Mat R = Mat R
13 12 mat0dimid R Ring 1 Mat R =
14 0fin Fin
15 12 matring Fin R Ring Mat R Ring
16 14 15 mpan R Ring Mat R Ring
17 eqid Unit Mat R = Unit Mat R
18 eqid 1 Mat R = 1 Mat R
19 17 18 1unit Mat R Ring 1 Mat R Unit Mat R
20 16 19 syl R Ring 1 Mat R Unit Mat R
21 13 20 eqeltrrd R Ring Unit Mat R
22 10 11 21 3syl R Field Unit Mat R
23 f0 : Base R freeLMod
24 dm0 dom =
25 24 feq2i : dom Base R freeLMod : Base R freeLMod
26 23 25 mpbir : dom Base R freeLMod
27 rzal dom = x dom y Base Scalar R freeLMod 0 Scalar R freeLMod ¬ y R freeLMod x LSpan R freeLMod dom x
28 24 27 ax-mp x dom y Base Scalar R freeLMod 0 Scalar R freeLMod ¬ y R freeLMod x LSpan R freeLMod dom x
29 ovex R freeLMod V
30 eqid Base R freeLMod = Base R freeLMod
31 eqid R freeLMod = R freeLMod
32 eqid LSpan R freeLMod = LSpan R freeLMod
33 eqid Scalar R freeLMod = Scalar R freeLMod
34 eqid Base Scalar R freeLMod = Base Scalar R freeLMod
35 eqid 0 Scalar R freeLMod = 0 Scalar R freeLMod
36 30 31 32 33 34 35 islindf R freeLMod V Fin LIndF R freeLMod : dom Base R freeLMod x dom y Base Scalar R freeLMod 0 Scalar R freeLMod ¬ y R freeLMod x LSpan R freeLMod dom x
37 29 14 36 mp2an LIndF R freeLMod : dom Base R freeLMod x dom y Base Scalar R freeLMod 0 Scalar R freeLMod ¬ y R freeLMod x LSpan R freeLMod dom x
38 26 28 37 mpbir2an LIndF R freeLMod
39 38 a1i R Field LIndF R freeLMod
40 22 39 2thd R Field Unit Mat R LIndF R freeLMod
41 fvoveq1 I = Unit I Mat R = Unit Mat R
42 eleq12 M = Unit I Mat R = Unit Mat R M Unit I Mat R Unit Mat R
43 41 42 sylan2 M = I = M Unit I Mat R Unit Mat R
44 cureq M = curry M = curry
45 df-cur curry = x dom dom y z | x y z
46 24 dmeqi dom dom = dom
47 46 24 eqtri dom dom =
48 mpteq1 dom dom = x dom dom y z | x y z = x y z | x y z
49 47 48 ax-mp x dom dom y z | x y z = x y z | x y z
50 mpt0 x y z | x y z =
51 45 49 50 3eqtri curry =
52 44 51 syl6eq M = curry M =
53 oveq2 I = R freeLMod I = R freeLMod
54 52 53 breqan12d M = I = curry M LIndF R freeLMod I LIndF R freeLMod
55 43 54 bibi12d M = I = M Unit I Mat R curry M LIndF R freeLMod I Unit Mat R LIndF R freeLMod
56 55 biimparc Unit Mat R LIndF R freeLMod M = I = M Unit I Mat R curry M LIndF R freeLMod I
57 40 56 sylan R Field M = I = M Unit I Mat R curry M LIndF R freeLMod I
58 57 anassrs R Field M = I = M Unit I Mat R curry M LIndF R freeLMod I
59 8 58 sylancom R Field M Base I Mat R I = M Unit I Mat R curry M LIndF R freeLMod I
60 9 simprbi R Field R CRing
61 eqid I Mat R = I Mat R
62 eqid I maDet R = I maDet R
63 eqid Base I Mat R = Base I Mat R
64 eqid Unit I Mat R = Unit I Mat R
65 eqid Unit R = Unit R
66 61 62 63 64 65 matunit R CRing M Base I Mat R M Unit I Mat R I maDet R M Unit R
67 60 66 sylan R Field M Base I Mat R M Unit I Mat R I maDet R M Unit R
68 67 adantr R Field M Base I Mat R I M Unit I Mat R I maDet R M Unit R
69 eqid Base R = Base R
70 eqid 0 R = 0 R
71 69 65 70 drngunit R DivRing I maDet R M Unit R I maDet R M Base R I maDet R M 0 R
72 10 71 syl R Field I maDet R M Unit R I maDet R M Base R I maDet R M 0 R
73 72 adantr R Field M Base I Mat R I maDet R M Unit R I maDet R M Base R I maDet R M 0 R
74 62 61 63 69 mdetcl R CRing M Base I Mat R I maDet R M Base R
75 60 74 sylan R Field M Base I Mat R I maDet R M Base R
76 75 biantrurd R Field M Base I Mat R I maDet R M 0 R I maDet R M Base R I maDet R M 0 R
77 73 76 bitr4d R Field M Base I Mat R I maDet R M Unit R I maDet R M 0 R
78 77 adantr R Field M Base I Mat R I I maDet R M Unit R I maDet R M 0 R
79 61 63 matrcl M Base I Mat R I Fin R V
80 79 simpld M Base I Mat R I Fin
81 80 pm4.71i M Base I Mat R M Base I Mat R I Fin
82 xpfi I Fin I Fin I × I Fin
83 82 anidms I Fin I × I Fin
84 eqid R freeLMod I × I = R freeLMod I × I
85 84 69 frlmfibas R Field I × I Fin Base R I × I = Base R freeLMod I × I
86 83 85 sylan2 R Field I Fin Base R I × I = Base R freeLMod I × I
87 61 84 matbas I Fin R Field Base R freeLMod I × I = Base I Mat R
88 87 ancoms R Field I Fin Base R freeLMod I × I = Base I Mat R
89 86 88 eqtrd R Field I Fin Base R I × I = Base I Mat R
90 89 eleq2d R Field I Fin M Base R I × I M Base I Mat R
91 fvex Base R V
92 elmapg Base R V I × I Fin M Base R I × I M : I × I Base R
93 91 83 92 sylancr I Fin M Base R I × I M : I × I Base R
94 93 adantl R Field I Fin M Base R I × I M : I × I Base R
95 90 94 bitr3d R Field I Fin M Base I Mat R M : I × I Base R
96 95 ex R Field I Fin M Base I Mat R M : I × I Base R
97 96 pm5.32rd R Field M Base I Mat R I Fin M : I × I Base R I Fin
98 81 97 syl5bb R Field M Base I Mat R M : I × I Base R I Fin
99 98 biimpd R Field M Base I Mat R M : I × I Base R I Fin
100 99 imdistani R Field M Base I Mat R R Field M : I × I Base R I Fin
101 anass R Field M : I × I Base R I Fin R Field M : I × I Base R I Fin
102 100 101 sylibr R Field M Base I Mat R R Field M : I × I Base R I Fin
103 eldifsn I Fin I Fin I
104 matunitlindflem1 R Field M : I × I Base R I Fin ¬ curry M LIndF R freeLMod I I maDet R M = 0 R
105 104 necon1ad R Field M : I × I Base R I Fin I maDet R M 0 R curry M LIndF R freeLMod I
106 103 105 sylan2br R Field M : I × I Base R I Fin I I maDet R M 0 R curry M LIndF R freeLMod I
107 106 anassrs R Field M : I × I Base R I Fin I I maDet R M 0 R curry M LIndF R freeLMod I
108 102 107 sylan R Field M Base I Mat R I I maDet R M 0 R curry M LIndF R freeLMod I
109 78 108 sylbid R Field M Base I Mat R I I maDet R M Unit R curry M LIndF R freeLMod I
110 matunitlindflem2 R Field M Base I Mat R I curry M LIndF R freeLMod I I maDet R M Unit R
111 110 ex R Field M Base I Mat R I curry M LIndF R freeLMod I I maDet R M Unit R
112 109 111 impbid R Field M Base I Mat R I I maDet R M Unit R curry M LIndF R freeLMod I
113 68 112 bitrd R Field M Base I Mat R I M Unit I Mat R curry M LIndF R freeLMod I
114 59 113 pm2.61dane R Field M Base I Mat R M Unit I Mat R curry M LIndF R freeLMod I