Metamath Proof Explorer


Theorem matval

Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matval.a A = N Mat R
matval.g G = R freeLMod N × N
matval.t · ˙ = R maMul N N N
Assertion matval N Fin R V A = G sSet ndx · ˙

Proof

Step Hyp Ref Expression
1 matval.a A = N Mat R
2 matval.g G = R freeLMod N × N
3 matval.t · ˙ = R maMul N N N
4 elex R V R V
5 id r = R r = R
6 id n = N n = N
7 6 sqxpeqd n = N n × n = N × N
8 5 7 oveqan12rd n = N r = R r freeLMod n × n = R freeLMod N × N
9 8 2 eqtr4di n = N r = R r freeLMod n × n = G
10 6 6 6 oteq123d n = N n n n = N N N
11 5 10 oveqan12rd n = N r = R r maMul n n n = R maMul N N N
12 11 3 eqtr4di n = N r = R r maMul n n n = · ˙
13 12 opeq2d n = N r = R ndx r maMul n n n = ndx · ˙
14 9 13 oveq12d n = N r = R r freeLMod n × n sSet ndx r maMul n n n = G sSet ndx · ˙
15 df-mat Mat = n Fin , r V r freeLMod n × n sSet ndx r maMul n n n
16 ovex G sSet ndx · ˙ V
17 14 15 16 ovmpoa N Fin R V N Mat R = G sSet ndx · ˙
18 4 17 sylan2 N Fin R V N Mat R = G sSet ndx · ˙
19 1 18 syl5eq N Fin R V A = G sSet ndx · ˙