Metamath Proof Explorer


Theorem matvscl

Description: Closure of the scalar multiplication in the matrix ring. ( lmodvscl analog.) (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses matvscl.k K = Base R
matvscl.a A = N Mat R
matvscl.b B = Base A
matvscl.s · ˙ = A
Assertion matvscl N Fin R Ring C K X B C · ˙ X B

Proof

Step Hyp Ref Expression
1 matvscl.k K = Base R
2 matvscl.a A = N Mat R
3 matvscl.b B = Base A
4 matvscl.s · ˙ = A
5 2 matlmod N Fin R Ring A LMod
6 5 adantr N Fin R Ring C K X B A LMod
7 2 matsca2 N Fin R Ring R = Scalar A
8 7 fveq2d N Fin R Ring Base R = Base Scalar A
9 1 8 syl5eq N Fin R Ring K = Base Scalar A
10 9 eleq2d N Fin R Ring C K C Base Scalar A
11 10 biimpd N Fin R Ring C K C Base Scalar A
12 11 adantrd N Fin R Ring C K X B C Base Scalar A
13 12 imp N Fin R Ring C K X B C Base Scalar A
14 simprr N Fin R Ring C K X B X B
15 eqid Scalar A = Scalar A
16 eqid Base Scalar A = Base Scalar A
17 3 15 4 16 lmodvscl A LMod C Base Scalar A X B C · ˙ X B
18 6 13 14 17 syl3anc N Fin R Ring C K X B C · ˙ X B