Metamath Proof Explorer


Theorem mavmul0g

Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019)

Ref Expression
Hypothesis mavmul0.t · ˙ = R maVecMul N N
Assertion mavmul0g N = R V X · ˙ Y =

Proof

Step Hyp Ref Expression
1 mavmul0.t · ˙ = R maVecMul N N
2 oveq12 X = Y = X · ˙ Y = · ˙
3 1 mavmul0 N = R V · ˙ =
4 2 3 sylan9eq X = Y = N = R V X · ˙ Y =
5 eqid Base R = Base R
6 eqid R = R
7 simpr N = R V R V
8 0fin Fin
9 eleq1 N = N Fin Fin
10 8 9 mpbiri N = N Fin
11 10 adantr N = R V N Fin
12 1 5 6 7 11 11 mvmulfval N = R V · ˙ = i Base R N × N , j Base R N k N R l N k i l R j l
13 12 dmeqd N = R V dom · ˙ = dom i Base R N × N , j Base R N k N R l N k i l R j l
14 0ex V
15 eleq1 N = N V V
16 14 15 mpbiri N = N V
17 16 mptexd N = k N R l N k i l R j l V
18 17 adantr N = R V k N R l N k i l R j l V
19 18 adantr N = R V i Base R N × N j Base R N k N R l N k i l R j l V
20 19 ralrimivva N = R V i Base R N × N j Base R N k N R l N k i l R j l V
21 eqid i Base R N × N , j Base R N k N R l N k i l R j l = i Base R N × N , j Base R N k N R l N k i l R j l
22 21 dmmpoga i Base R N × N j Base R N k N R l N k i l R j l V dom i Base R N × N , j Base R N k N R l N k i l R j l = Base R N × N × Base R N
23 20 22 syl N = R V dom i Base R N × N , j Base R N k N R l N k i l R j l = Base R N × N × Base R N
24 id N = N =
25 24 24 xpeq12d N = N × N = ×
26 0xp × =
27 25 26 eqtrdi N = N × N =
28 27 oveq2d N = Base R N × N = Base R
29 fvex Base R V
30 map0e Base R V Base R = 1 𝑜
31 29 30 mp1i N = Base R = 1 𝑜
32 28 31 eqtrd N = Base R N × N = 1 𝑜
33 32 adantr N = R V Base R N × N = 1 𝑜
34 df1o2 1 𝑜 =
35 33 34 eqtrdi N = R V Base R N × N =
36 oveq2 N = Base R N = Base R
37 29 30 mp1i R V Base R = 1 𝑜
38 37 34 eqtrdi R V Base R =
39 36 38 sylan9eq N = R V Base R N =
40 35 39 xpeq12d N = R V Base R N × N × Base R N = ×
41 13 23 40 3eqtrd N = R V dom · ˙ = ×
42 elsni X X =
43 elsni Y Y =
44 42 43 anim12i X Y X = Y =
45 44 con3i ¬ X = Y = ¬ X Y
46 ndmovg dom · ˙ = × ¬ X Y X · ˙ Y =
47 41 45 46 syl2anr ¬ X = Y = N = R V X · ˙ Y =
48 4 47 pm2.61ian N = R V X · ˙ Y =