Step |
Hyp |
Ref |
Expression |
1 |
|
1mavmul.a |
|
2 |
|
1mavmul.b |
|
3 |
|
1mavmul.t |
|
4 |
|
1mavmul.r |
|
5 |
|
1mavmul.n |
|
6 |
|
1mavmul.y |
|
7 |
|
mavmulass.m |
|
8 |
|
mavmulass.x |
|
9 |
|
mavmulass.z |
|
10 |
|
eqid |
|
11 |
1 2
|
matbas2 |
|
12 |
5 4 11
|
syl2anc |
|
13 |
8 12
|
eleqtrrd |
|
14 |
9 12
|
eleqtrrd |
|
15 |
2 4 7 5 5 5 13 14
|
mamucl |
|
16 |
15 12
|
eleqtrd |
|
17 |
1 3 2 10 4 5 16 6
|
mavmulcl |
|
18 |
|
elmapi |
|
19 |
|
ffn |
|
20 |
17 18 19
|
3syl |
|
21 |
1 3 2 10 4 5 9 6
|
mavmulcl |
|
22 |
1 3 2 10 4 5 8 21
|
mavmulcl |
|
23 |
|
elmapi |
|
24 |
|
ffn |
|
25 |
22 23 24
|
3syl |
|
26 |
|
ringcmn |
|
27 |
4 26
|
syl |
|
28 |
27
|
adantr |
|
29 |
5
|
adantr |
|
30 |
4
|
ad2antrr |
|
31 |
|
elmapi |
|
32 |
13 31
|
syl |
|
33 |
32
|
ad2antrr |
|
34 |
|
simplr |
|
35 |
|
simprr |
|
36 |
33 34 35
|
fovrnd |
|
37 |
|
elmapi |
|
38 |
14 37
|
syl |
|
39 |
38
|
ad2antrr |
|
40 |
|
simprl |
|
41 |
39 35 40
|
fovrnd |
|
42 |
|
elmapi |
|
43 |
|
ffvelrn |
|
44 |
43
|
ex |
|
45 |
6 42 44
|
3syl |
|
46 |
45
|
imp |
|
47 |
46
|
ad2ant2r |
|
48 |
2 10
|
ringcl |
|
49 |
30 41 47 48
|
syl3anc |
|
50 |
2 10
|
ringcl |
|
51 |
30 36 49 50
|
syl3anc |
|
52 |
2 28 29 29 51
|
gsumcom3fi |
|
53 |
4
|
ad2antrr |
|
54 |
5
|
ad2antrr |
|
55 |
13
|
ad2antrr |
|
56 |
14
|
ad2antrr |
|
57 |
|
simplr |
|
58 |
|
simpr |
|
59 |
7 2 10 53 54 54 54 55 56 57 58
|
mamufv |
|
60 |
59
|
oveq1d |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
46
|
adantlr |
|
64 |
4
|
adantr |
|
65 |
64
|
ad2antrr |
|
66 |
32
|
ad2antrr |
|
67 |
|
simplr |
|
68 |
|
simpr |
|
69 |
66 67 68
|
fovrnd |
|
70 |
69
|
adantlr |
|
71 |
38
|
adantr |
|
72 |
71
|
ad2antrr |
|
73 |
|
simpr |
|
74 |
|
simplr |
|
75 |
72 73 74
|
fovrnd |
|
76 |
2 10
|
ringcl |
|
77 |
65 70 75 76
|
syl3anc |
|
78 |
|
eqid |
|
79 |
|
ovexd |
|
80 |
|
fvexd |
|
81 |
78 54 79 80
|
fsuppmptdm |
|
82 |
2 61 62 10 53 54 63 77 81
|
gsummulc1 |
|
83 |
2 10
|
ringass |
|
84 |
30 36 41 47 83
|
syl13anc |
|
85 |
84
|
anassrs |
|
86 |
85
|
mpteq2dva |
|
87 |
86
|
oveq2d |
|
88 |
60 82 87
|
3eqtr2d |
|
89 |
88
|
mpteq2dva |
|
90 |
89
|
oveq2d |
|
91 |
4
|
ad2antrr |
|
92 |
5
|
ad2antrr |
|
93 |
9
|
ad2antrr |
|
94 |
6
|
ad2antrr |
|
95 |
1 3 2 10 91 92 93 94 68
|
mavmulfv |
|
96 |
95
|
oveq2d |
|
97 |
64
|
ad2antrr |
|
98 |
71
|
ad2antrr |
|
99 |
|
simplr |
|
100 |
|
simpr |
|
101 |
98 99 100
|
fovrnd |
|
102 |
45
|
ad2antrr |
|
103 |
102
|
imp |
|
104 |
97 101 103 48
|
syl3anc |
|
105 |
|
eqid |
|
106 |
|
ovexd |
|
107 |
|
fvexd |
|
108 |
105 92 106 107
|
fsuppmptdm |
|
109 |
2 61 62 10 91 92 69 104 108
|
gsummulc2 |
|
110 |
96 109
|
eqtr4d |
|
111 |
110
|
mpteq2dva |
|
112 |
111
|
oveq2d |
|
113 |
52 90 112
|
3eqtr4d |
|
114 |
16
|
adantr |
|
115 |
6
|
adantr |
|
116 |
|
simpr |
|
117 |
1 3 2 10 64 29 114 115 116
|
mavmulfv |
|
118 |
8
|
adantr |
|
119 |
21
|
adantr |
|
120 |
1 3 2 10 64 29 118 119 116
|
mavmulfv |
|
121 |
113 117 120
|
3eqtr4d |
|
122 |
20 25 121
|
eqfnfvd |
|