Step |
Hyp |
Ref |
Expression |
1 |
|
1mavmul.a |
|
2 |
|
1mavmul.b |
|
3 |
|
1mavmul.t |
|
4 |
|
1mavmul.r |
|
5 |
|
1mavmul.n |
|
6 |
|
1mavmul.y |
|
7 |
|
mavmulass.m |
|
8 |
|
mavmulass.x |
|
9 |
|
mavmulass.z |
|
10 |
|
eqid |
|
11 |
1 2
|
matbas2 |
|
12 |
5 4 11
|
syl2anc |
|
13 |
8 12
|
eleqtrrd |
|
14 |
9 12
|
eleqtrrd |
|
15 |
2 4 7 5 5 5 13 14
|
mamucl |
|
16 |
15 12
|
eleqtrd |
|
17 |
1 3 2 10 4 5 16 6
|
mavmulcl |
|
18 |
|
elmapi |
|
19 |
|
ffn |
|
20 |
17 18 19
|
3syl |
|
21 |
1 3 2 10 4 5 9 6
|
mavmulcl |
|
22 |
1 3 2 10 4 5 8 21
|
mavmulcl |
|
23 |
|
elmapi |
|
24 |
|
ffn |
|
25 |
22 23 24
|
3syl |
|
26 |
4
|
ringcmnd |
|
27 |
26
|
adantr |
|
28 |
5
|
adantr |
|
29 |
4
|
ad2antrr |
|
30 |
|
elmapi |
|
31 |
13 30
|
syl |
|
32 |
31
|
ad2antrr |
|
33 |
|
simplr |
|
34 |
|
simprr |
|
35 |
32 33 34
|
fovcdmd |
|
36 |
|
elmapi |
|
37 |
14 36
|
syl |
|
38 |
37
|
ad2antrr |
|
39 |
|
simprl |
|
40 |
38 34 39
|
fovcdmd |
|
41 |
|
elmapi |
|
42 |
|
ffvelcdm |
|
43 |
42
|
ex |
|
44 |
6 41 43
|
3syl |
|
45 |
44
|
imp |
|
46 |
45
|
ad2ant2r |
|
47 |
2 10 29 40 46
|
ringcld |
|
48 |
2 10 29 35 47
|
ringcld |
|
49 |
2 27 28 28 48
|
gsumcom3fi |
|
50 |
4
|
ad2antrr |
|
51 |
5
|
ad2antrr |
|
52 |
13
|
ad2antrr |
|
53 |
14
|
ad2antrr |
|
54 |
|
simplr |
|
55 |
|
simpr |
|
56 |
7 2 10 50 51 51 51 52 53 54 55
|
mamufv |
|
57 |
56
|
oveq1d |
|
58 |
|
eqid |
|
59 |
45
|
adantlr |
|
60 |
4
|
adantr |
|
61 |
60
|
ad2antrr |
|
62 |
31
|
ad2antrr |
|
63 |
|
simplr |
|
64 |
|
simpr |
|
65 |
62 63 64
|
fovcdmd |
|
66 |
65
|
adantlr |
|
67 |
37
|
adantr |
|
68 |
67
|
ad2antrr |
|
69 |
|
simpr |
|
70 |
|
simplr |
|
71 |
68 69 70
|
fovcdmd |
|
72 |
2 10 61 66 71
|
ringcld |
|
73 |
|
eqid |
|
74 |
|
ovexd |
|
75 |
|
fvexd |
|
76 |
73 51 74 75
|
fsuppmptdm |
|
77 |
2 58 10 50 51 59 72 76
|
gsummulc1 |
|
78 |
2 10
|
ringass |
|
79 |
29 35 40 46 78
|
syl13anc |
|
80 |
79
|
anassrs |
|
81 |
80
|
mpteq2dva |
|
82 |
81
|
oveq2d |
|
83 |
57 77 82
|
3eqtr2d |
|
84 |
83
|
mpteq2dva |
|
85 |
84
|
oveq2d |
|
86 |
4
|
ad2antrr |
|
87 |
5
|
ad2antrr |
|
88 |
9
|
ad2antrr |
|
89 |
6
|
ad2antrr |
|
90 |
1 3 2 10 86 87 88 89 64
|
mavmulfv |
|
91 |
90
|
oveq2d |
|
92 |
60
|
ad2antrr |
|
93 |
67
|
ad2antrr |
|
94 |
|
simplr |
|
95 |
|
simpr |
|
96 |
93 94 95
|
fovcdmd |
|
97 |
44
|
ad2antrr |
|
98 |
97
|
imp |
|
99 |
2 10 92 96 98
|
ringcld |
|
100 |
|
eqid |
|
101 |
|
ovexd |
|
102 |
|
fvexd |
|
103 |
100 87 101 102
|
fsuppmptdm |
|
104 |
2 58 10 86 87 65 99 103
|
gsummulc2 |
|
105 |
91 104
|
eqtr4d |
|
106 |
105
|
mpteq2dva |
|
107 |
106
|
oveq2d |
|
108 |
49 85 107
|
3eqtr4d |
|
109 |
16
|
adantr |
|
110 |
6
|
adantr |
|
111 |
|
simpr |
|
112 |
1 3 2 10 60 28 109 110 111
|
mavmulfv |
|
113 |
8
|
adantr |
|
114 |
21
|
adantr |
|
115 |
1 3 2 10 60 28 113 114 111
|
mavmulfv |
|
116 |
108 112 115
|
3eqtr4d |
|
117 |
20 25 116
|
eqfnfvd |
|