Metamath Proof Explorer


Theorem mavmulfv

Description: A cell/element in the vector resulting from a multiplication of a vector with a square matrix. (Contributed by AV, 6-Dec-2018) (Revised by AV, 18-Feb-2019) (Revised by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a A = N Mat R
mavmulval.m × ˙ = R maVecMul N N
mavmulval.b B = Base R
mavmulval.t · ˙ = R
mavmulval.r φ R V
mavmulval.n φ N Fin
mavmulval.x φ X Base A
mavmulval.y φ Y B N
mavmulfv.i φ I N
Assertion mavmulfv φ X × ˙ Y I = R j N I X j · ˙ Y j

Proof

Step Hyp Ref Expression
1 mavmulval.a A = N Mat R
2 mavmulval.m × ˙ = R maVecMul N N
3 mavmulval.b B = Base R
4 mavmulval.t · ˙ = R
5 mavmulval.r φ R V
6 mavmulval.n φ N Fin
7 mavmulval.x φ X Base A
8 mavmulval.y φ Y B N
9 mavmulfv.i φ I N
10 1 2 3 4 5 6 7 8 mavmulval φ X × ˙ Y = i N R j N i X j · ˙ Y j
11 oveq1 i = I i X j = I X j
12 11 adantl φ i = I i X j = I X j
13 12 oveq1d φ i = I i X j · ˙ Y j = I X j · ˙ Y j
14 13 mpteq2dv φ i = I j N i X j · ˙ Y j = j N I X j · ˙ Y j
15 14 oveq2d φ i = I R j N i X j · ˙ Y j = R j N I X j · ˙ Y j
16 ovexd φ R j N I X j · ˙ Y j V
17 10 15 9 16 fvmptd φ X × ˙ Y I = R j N I X j · ˙ Y j