Metamath Proof Explorer


Theorem mavmulval

Description: Multiplication of a vector with a square matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a A = N Mat R
mavmulval.m × ˙ = R maVecMul N N
mavmulval.b B = Base R
mavmulval.t · ˙ = R
mavmulval.r φ R V
mavmulval.n φ N Fin
mavmulval.x φ X Base A
mavmulval.y φ Y B N
Assertion mavmulval φ X × ˙ Y = i N R j N i X j · ˙ Y j

Proof

Step Hyp Ref Expression
1 mavmulval.a A = N Mat R
2 mavmulval.m × ˙ = R maVecMul N N
3 mavmulval.b B = Base R
4 mavmulval.t · ˙ = R
5 mavmulval.r φ R V
6 mavmulval.n φ N Fin
7 mavmulval.x φ X Base A
8 mavmulval.y φ Y B N
9 1 3 matbas2 N Fin R V B N × N = Base A
10 6 5 9 syl2anc φ B N × N = Base A
11 7 10 eleqtrrd φ X B N × N
12 2 3 4 5 6 6 11 8 mvmulval φ X × ˙ Y = i N R j N i X j · ˙ Y j