Metamath Proof Explorer


Theorem mavmumamul1

Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses mavmumamul1.a A = N Mat R
mavmumamul1.m × ˙ = R maMul N N
mavmumamul1.t · ˙ = R maVecMul N N
mavmumamul1.b B = Base R
mavmumamul1.r φ R Ring
mavmumamul1.n φ N Fin
mavmumamul1.x φ X Base A
mavmumamul1.y φ Y B N
mavmumamul1.z φ Z B N ×
Assertion mavmumamul1 φ j N Y j = j Z i N X · ˙ Y i = i X × ˙ Z

Proof

Step Hyp Ref Expression
1 mavmumamul1.a A = N Mat R
2 mavmumamul1.m × ˙ = R maMul N N
3 mavmumamul1.t · ˙ = R maVecMul N N
4 mavmumamul1.b B = Base R
5 mavmumamul1.r φ R Ring
6 mavmumamul1.n φ N Fin
7 mavmumamul1.x φ X Base A
8 mavmumamul1.y φ Y B N
9 mavmumamul1.z φ Z B N ×
10 1 4 matbas2 N Fin R Ring B N × N = Base A
11 6 5 10 syl2anc φ B N × N = Base A
12 7 11 eleqtrrd φ X B N × N
13 2 3 4 5 6 6 12 8 9 mvmumamul1 φ j N Y j = j Z i N X · ˙ Y i = i X × ˙ Z