Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|
2 |
|
id |
|
3 |
|
recn |
|
4 |
3
|
adantr |
|
5 |
4
|
addid1d |
|
6 |
|
iftrue |
|
7 |
6
|
adantl |
|
8 |
|
le0neg2 |
|
9 |
8
|
biimpa |
|
10 |
9
|
adantr |
|
11 |
|
simpr |
|
12 |
|
renegcl |
|
13 |
12
|
ad2antrr |
|
14 |
|
0re |
|
15 |
|
letri3 |
|
16 |
13 14 15
|
sylancl |
|
17 |
10 11 16
|
mpbir2and |
|
18 |
17
|
ifeq1da |
|
19 |
|
ifid |
|
20 |
18 19
|
eqtrdi |
|
21 |
7 20
|
oveq12d |
|
22 |
|
absid |
|
23 |
5 21 22
|
3eqtr4d |
|
24 |
3
|
adantr |
|
25 |
24
|
negcld |
|
26 |
25
|
addid2d |
|
27 |
|
letri3 |
|
28 |
14 27
|
mpan2 |
|
29 |
28
|
biimprd |
|
30 |
29
|
impl |
|
31 |
30
|
ifeq1da |
|
32 |
|
ifid |
|
33 |
31 32
|
eqtrdi |
|
34 |
|
le0neg1 |
|
35 |
34
|
biimpa |
|
36 |
35
|
iftrued |
|
37 |
33 36
|
oveq12d |
|
38 |
|
absnid |
|
39 |
26 37 38
|
3eqtr4d |
|
40 |
1 2 23 39
|
lecasei |
|