Metamath Proof Explorer


Theorem max1d

Description: A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses max1d.1 φ A
max1d.2 φ B
Assertion max1d φ A if A B B A

Proof

Step Hyp Ref Expression
1 max1d.1 φ A
2 max1d.2 φ B
3 max1 A B A if A B B A
4 1 2 3 syl2anc φ A if A B B A