Metamath Proof Explorer


Theorem max2d

Description: A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses max2d.1 φ A
max2d.2 φ B
Assertion max2d φ B if A B B A

Proof

Step Hyp Ref Expression
1 max2d.1 φ A
2 max2d.2 φ B
3 max2 A B B if A B B A
4 1 2 3 syl2anc φ B if A B B A