Metamath Proof Explorer


Theorem maxlp

Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion maxlp J Top P limPt J X P X ¬ P J

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 ssid X X
3 1 lpss J Top X X limPt J X X
4 2 3 mpan2 J Top limPt J X X
5 4 sseld J Top P limPt J X P X
6 5 pm4.71rd J Top P limPt J X P X P limPt J X
7 simpl J Top P X J Top
8 1 islp J Top X X P limPt J X P cls J X P
9 7 2 8 sylancl J Top P X P limPt J X P cls J X P
10 snssi P X P X
11 1 clsdif J Top P X cls J X P = X int J P
12 10 11 sylan2 J Top P X cls J X P = X int J P
13 12 eleq2d J Top P X P cls J X P P X int J P
14 eldif P X int J P P X ¬ P int J P
15 14 baib P X P X int J P ¬ P int J P
16 15 adantl J Top P X P X int J P ¬ P int J P
17 snssi P int J P P int J P
18 17 adantl J Top P X P int J P P int J P
19 1 ntrss2 J Top P X int J P P
20 10 19 sylan2 J Top P X int J P P
21 20 adantr J Top P X P int J P int J P P
22 18 21 eqssd J Top P X P int J P P = int J P
23 1 ntropn J Top P X int J P J
24 10 23 sylan2 J Top P X int J P J
25 24 adantr J Top P X P int J P int J P J
26 22 25 eqeltrd J Top P X P int J P P J
27 snidg P X P P
28 27 ad2antlr J Top P X P J P P
29 isopn3i J Top P J int J P = P
30 29 adantlr J Top P X P J int J P = P
31 28 30 eleqtrrd J Top P X P J P int J P
32 26 31 impbida J Top P X P int J P P J
33 32 notbid J Top P X ¬ P int J P ¬ P J
34 16 33 bitrd J Top P X P X int J P ¬ P J
35 9 13 34 3bitrd J Top P X P limPt J X ¬ P J
36 35 pm5.32da J Top P X P limPt J X P X ¬ P J
37 6 36 bitrd J Top P limPt J X P X ¬ P J