Metamath Proof Explorer


Theorem maxs1

Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion maxs1 A No A s if A s B B A

Proof

Step Hyp Ref Expression
1 slerflex A No A s A
2 iffalse ¬ A s B if A s B B A = A
3 2 breq2d ¬ A s B A s if A s B B A A s A
4 1 3 syl5ibrcom A No ¬ A s B A s if A s B B A
5 id A s B A s B
6 iftrue A s B if A s B B A = B
7 5 6 breqtrrd A s B A s if A s B B A
8 4 7 pm2.61d2 A No A s if A s B B A