Metamath Proof Explorer


Theorem maxs2

Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion maxs2 A No B No B s if A s B B A

Proof

Step Hyp Ref Expression
1 slerflex B No B s B
2 1 ad2antlr A No B No A s B B s B
3 iftrue A s B if A s B B A = B
4 3 adantl A No B No A s B if A s B B A = B
5 2 4 breqtrrd A No B No A s B B s if A s B B A
6 sletric A No B No A s B B s A
7 6 orcanai A No B No ¬ A s B B s A
8 iffalse ¬ A s B if A s B B A = A
9 8 adantl A No B No ¬ A s B if A s B B A = A
10 7 9 breqtrrd A No B No ¬ A s B B s if A s B B A
11 5 10 pm2.61dan A No B No B s if A s B B A