Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
mbf0
Next ⟩
mbfid
Metamath Proof Explorer
Ascii
Unicode
Theorem
mbf0
Description:
The empty function is measurable.
(Contributed by
Brendan Leahy
, 28-Mar-2018)
Ref
Expression
Assertion
mbf0
⊢
∅
∈
MblFn
Proof
Step
Hyp
Ref
Expression
1
0xp
⊢
∅
×
1
=
∅
2
0mbl
⊢
∅
∈
dom
⁡
vol
3
ax-1cn
⊢
1
∈
ℂ
4
mbfconst
⊢
∅
∈
dom
⁡
vol
∧
1
∈
ℂ
→
∅
×
1
∈
MblFn
5
2
3
4
mp2an
⊢
∅
×
1
∈
MblFn
6
1
5
eqeltrri
⊢
∅
∈
MblFn