Step |
Hyp |
Ref |
Expression |
1 |
|
mbfadd.1 |
|
2 |
|
mbfadd.2 |
|
3 |
|
mbff |
|
4 |
1 3
|
syl |
|
5 |
4
|
ffnd |
|
6 |
|
mbff |
|
7 |
2 6
|
syl |
|
8 |
7
|
ffnd |
|
9 |
|
mbfdm |
|
10 |
1 9
|
syl |
|
11 |
|
mbfdm |
|
12 |
2 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqidd |
|
15 |
|
eqidd |
|
16 |
5 8 10 12 13 14 15
|
offval |
|
17 |
|
elinel1 |
|
18 |
|
ffvelrn |
|
19 |
4 17 18
|
syl2an |
|
20 |
|
elinel2 |
|
21 |
|
ffvelrn |
|
22 |
7 20 21
|
syl2an |
|
23 |
19 22
|
readdd |
|
24 |
23
|
mpteq2dva |
|
25 |
|
inmbl |
|
26 |
10 12 25
|
syl2anc |
|
27 |
19
|
recld |
|
28 |
22
|
recld |
|
29 |
|
eqidd |
|
30 |
|
eqidd |
|
31 |
26 27 28 29 30
|
offval2 |
|
32 |
24 31
|
eqtr4d |
|
33 |
|
inss1 |
|
34 |
|
resmpt |
|
35 |
33 34
|
ax-mp |
|
36 |
4
|
feqmptd |
|
37 |
36 1
|
eqeltrrd |
|
38 |
|
mbfres |
|
39 |
37 26 38
|
syl2anc |
|
40 |
35 39
|
eqeltrrid |
|
41 |
19
|
ismbfcn2 |
|
42 |
40 41
|
mpbid |
|
43 |
42
|
simpld |
|
44 |
|
inss2 |
|
45 |
|
resmpt |
|
46 |
44 45
|
ax-mp |
|
47 |
7
|
feqmptd |
|
48 |
47 2
|
eqeltrrd |
|
49 |
|
mbfres |
|
50 |
48 26 49
|
syl2anc |
|
51 |
46 50
|
eqeltrrid |
|
52 |
22
|
ismbfcn2 |
|
53 |
51 52
|
mpbid |
|
54 |
53
|
simpld |
|
55 |
27
|
fmpttd |
|
56 |
28
|
fmpttd |
|
57 |
43 54 55 56
|
mbfaddlem |
|
58 |
32 57
|
eqeltrd |
|
59 |
19 22
|
imaddd |
|
60 |
59
|
mpteq2dva |
|
61 |
19
|
imcld |
|
62 |
22
|
imcld |
|
63 |
|
eqidd |
|
64 |
|
eqidd |
|
65 |
26 61 62 63 64
|
offval2 |
|
66 |
60 65
|
eqtr4d |
|
67 |
42
|
simprd |
|
68 |
53
|
simprd |
|
69 |
61
|
fmpttd |
|
70 |
62
|
fmpttd |
|
71 |
67 68 69 70
|
mbfaddlem |
|
72 |
66 71
|
eqeltrd |
|
73 |
19 22
|
addcld |
|
74 |
73
|
ismbfcn2 |
|
75 |
58 72 74
|
mpbir2and |
|
76 |
16 75
|
eqeltrd |
|