Metamath Proof Explorer


Theorem mbfadd

Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses mbfadd.1 φ F MblFn
mbfadd.2 φ G MblFn
Assertion mbfadd φ F + f G MblFn

Proof

Step Hyp Ref Expression
1 mbfadd.1 φ F MblFn
2 mbfadd.2 φ G MblFn
3 mbff F MblFn F : dom F
4 1 3 syl φ F : dom F
5 4 ffnd φ F Fn dom F
6 mbff G MblFn G : dom G
7 2 6 syl φ G : dom G
8 7 ffnd φ G Fn dom G
9 mbfdm F MblFn dom F dom vol
10 1 9 syl φ dom F dom vol
11 mbfdm G MblFn dom G dom vol
12 2 11 syl φ dom G dom vol
13 eqid dom F dom G = dom F dom G
14 eqidd φ x dom F F x = F x
15 eqidd φ x dom G G x = G x
16 5 8 10 12 13 14 15 offval φ F + f G = x dom F dom G F x + G x
17 elinel1 x dom F dom G x dom F
18 ffvelrn F : dom F x dom F F x
19 4 17 18 syl2an φ x dom F dom G F x
20 elinel2 x dom F dom G x dom G
21 ffvelrn G : dom G x dom G G x
22 7 20 21 syl2an φ x dom F dom G G x
23 19 22 readdd φ x dom F dom G F x + G x = F x + G x
24 23 mpteq2dva φ x dom F dom G F x + G x = x dom F dom G F x + G x
25 inmbl dom F dom vol dom G dom vol dom F dom G dom vol
26 10 12 25 syl2anc φ dom F dom G dom vol
27 19 recld φ x dom F dom G F x
28 22 recld φ x dom F dom G G x
29 eqidd φ x dom F dom G F x = x dom F dom G F x
30 eqidd φ x dom F dom G G x = x dom F dom G G x
31 26 27 28 29 30 offval2 φ x dom F dom G F x + f x dom F dom G G x = x dom F dom G F x + G x
32 24 31 eqtr4d φ x dom F dom G F x + G x = x dom F dom G F x + f x dom F dom G G x
33 inss1 dom F dom G dom F
34 resmpt dom F dom G dom F x dom F F x dom F dom G = x dom F dom G F x
35 33 34 ax-mp x dom F F x dom F dom G = x dom F dom G F x
36 4 feqmptd φ F = x dom F F x
37 36 1 eqeltrrd φ x dom F F x MblFn
38 mbfres x dom F F x MblFn dom F dom G dom vol x dom F F x dom F dom G MblFn
39 37 26 38 syl2anc φ x dom F F x dom F dom G MblFn
40 35 39 eqeltrrid φ x dom F dom G F x MblFn
41 19 ismbfcn2 φ x dom F dom G F x MblFn x dom F dom G F x MblFn x dom F dom G F x MblFn
42 40 41 mpbid φ x dom F dom G F x MblFn x dom F dom G F x MblFn
43 42 simpld φ x dom F dom G F x MblFn
44 inss2 dom F dom G dom G
45 resmpt dom F dom G dom G x dom G G x dom F dom G = x dom F dom G G x
46 44 45 ax-mp x dom G G x dom F dom G = x dom F dom G G x
47 7 feqmptd φ G = x dom G G x
48 47 2 eqeltrrd φ x dom G G x MblFn
49 mbfres x dom G G x MblFn dom F dom G dom vol x dom G G x dom F dom G MblFn
50 48 26 49 syl2anc φ x dom G G x dom F dom G MblFn
51 46 50 eqeltrrid φ x dom F dom G G x MblFn
52 22 ismbfcn2 φ x dom F dom G G x MblFn x dom F dom G G x MblFn x dom F dom G G x MblFn
53 51 52 mpbid φ x dom F dom G G x MblFn x dom F dom G G x MblFn
54 53 simpld φ x dom F dom G G x MblFn
55 27 fmpttd φ x dom F dom G F x : dom F dom G
56 28 fmpttd φ x dom F dom G G x : dom F dom G
57 43 54 55 56 mbfaddlem φ x dom F dom G F x + f x dom F dom G G x MblFn
58 32 57 eqeltrd φ x dom F dom G F x + G x MblFn
59 19 22 imaddd φ x dom F dom G F x + G x = F x + G x
60 59 mpteq2dva φ x dom F dom G F x + G x = x dom F dom G F x + G x
61 19 imcld φ x dom F dom G F x
62 22 imcld φ x dom F dom G G x
63 eqidd φ x dom F dom G F x = x dom F dom G F x
64 eqidd φ x dom F dom G G x = x dom F dom G G x
65 26 61 62 63 64 offval2 φ x dom F dom G F x + f x dom F dom G G x = x dom F dom G F x + G x
66 60 65 eqtr4d φ x dom F dom G F x + G x = x dom F dom G F x + f x dom F dom G G x
67 42 simprd φ x dom F dom G F x MblFn
68 53 simprd φ x dom F dom G G x MblFn
69 61 fmpttd φ x dom F dom G F x : dom F dom G
70 62 fmpttd φ x dom F dom G G x : dom F dom G
71 67 68 69 70 mbfaddlem φ x dom F dom G F x + f x dom F dom G G x MblFn
72 66 71 eqeltrd φ x dom F dom G F x + G x MblFn
73 19 22 addcld φ x dom F dom G F x + G x
74 73 ismbfcn2 φ x dom F dom G F x + G x MblFn x dom F dom G F x + G x MblFn x dom F dom G F x + G x MblFn
75 58 72 74 mpbir2and φ x dom F dom G F x + G x MblFn
76 16 75 eqeltrd φ F + f G MblFn