| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfadd.1 |  | 
						
							| 2 |  | mbfadd.2 |  | 
						
							| 3 |  | mbfadd.3 |  | 
						
							| 4 |  | mbfadd.4 |  | 
						
							| 5 |  | readdcl |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 3 | fdmd |  | 
						
							| 8 |  | mbfdm |  | 
						
							| 9 | 1 8 | syl |  | 
						
							| 10 | 7 9 | eqeltrrd |  | 
						
							| 11 |  | inidm |  | 
						
							| 12 | 6 3 4 10 10 11 | off |  | 
						
							| 13 |  | eliun |  | 
						
							| 14 |  | r19.42v |  | 
						
							| 15 |  | simplr |  | 
						
							| 16 | 4 | adantr |  | 
						
							| 17 | 16 | ffvelcdmda |  | 
						
							| 18 | 3 | adantr |  | 
						
							| 19 | 18 | ffvelcdmda |  | 
						
							| 20 | 15 17 19 | ltsubaddd |  | 
						
							| 21 | 15 | adantr |  | 
						
							| 22 |  | qre |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 17 | adantr |  | 
						
							| 25 |  | ltsub23 |  | 
						
							| 26 | 21 23 24 25 | syl3anc |  | 
						
							| 27 | 26 | anbi1cd |  | 
						
							| 28 | 27 | rexbidva |  | 
						
							| 29 | 15 17 | resubcld |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 19 | adantr |  | 
						
							| 32 |  | lttr |  | 
						
							| 33 | 30 23 31 32 | syl3anc |  | 
						
							| 34 | 33 | rexlimdva |  | 
						
							| 35 |  | qbtwnre |  | 
						
							| 36 | 35 | 3expia |  | 
						
							| 37 | 29 19 36 | syl2anc |  | 
						
							| 38 | 34 37 | impbid |  | 
						
							| 39 | 28 38 | bitrd |  | 
						
							| 40 | 3 | ffnd |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 4 | ffnd |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 10 | adantr |  | 
						
							| 45 |  | eqidd |  | 
						
							| 46 |  | eqidd |  | 
						
							| 47 | 41 43 44 44 11 45 46 | ofval |  | 
						
							| 48 | 47 | breq2d |  | 
						
							| 49 | 20 39 48 | 3bitr4d |  | 
						
							| 50 | 23 | rexrd |  | 
						
							| 51 |  | elioopnf |  | 
						
							| 52 | 50 51 | syl |  | 
						
							| 53 | 31 52 | mpbirand |  | 
						
							| 54 | 21 23 | resubcld |  | 
						
							| 55 | 54 | rexrd |  | 
						
							| 56 |  | elioopnf |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 24 57 | mpbirand |  | 
						
							| 59 | 53 58 | anbi12d |  | 
						
							| 60 | 59 | rexbidva |  | 
						
							| 61 | 12 | adantr |  | 
						
							| 62 | 61 | ffvelcdmda |  | 
						
							| 63 | 15 | rexrd |  | 
						
							| 64 |  | elioopnf |  | 
						
							| 65 | 63 64 | syl |  | 
						
							| 66 | 62 65 | mpbirand |  | 
						
							| 67 | 49 60 66 | 3bitr4d |  | 
						
							| 68 | 67 | pm5.32da |  | 
						
							| 69 | 14 68 | bitrid |  | 
						
							| 70 |  | elpreima |  | 
						
							| 71 | 41 70 | syl |  | 
						
							| 72 |  | elpreima |  | 
						
							| 73 | 43 72 | syl |  | 
						
							| 74 | 71 73 | anbi12d |  | 
						
							| 75 |  | elin |  | 
						
							| 76 |  | anandi |  | 
						
							| 77 | 74 75 76 | 3bitr4g |  | 
						
							| 78 | 77 | rexbidv |  | 
						
							| 79 | 12 | ffnd |  | 
						
							| 80 | 79 | adantr |  | 
						
							| 81 |  | elpreima |  | 
						
							| 82 | 80 81 | syl |  | 
						
							| 83 | 69 78 82 | 3bitr4d |  | 
						
							| 84 | 13 83 | bitrid |  | 
						
							| 85 | 84 | eqrdv |  | 
						
							| 86 |  | qnnen |  | 
						
							| 87 |  | endom |  | 
						
							| 88 | 86 87 | ax-mp |  | 
						
							| 89 |  | mbfima |  | 
						
							| 90 | 1 3 89 | syl2anc |  | 
						
							| 91 |  | mbfima |  | 
						
							| 92 | 2 4 91 | syl2anc |  | 
						
							| 93 |  | inmbl |  | 
						
							| 94 | 90 92 93 | syl2anc |  | 
						
							| 95 | 94 | ad2antrr |  | 
						
							| 96 | 95 | ralrimiva |  | 
						
							| 97 |  | iunmbl2 |  | 
						
							| 98 | 88 96 97 | sylancr |  | 
						
							| 99 | 85 98 | eqeltrrd |  | 
						
							| 100 | 12 99 | ismbf3d |  |