Metamath Proof Explorer


Theorem mbfconstlem

Description: Lemma for mbfconst and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfconstlem A dom vol C A × C -1 B dom vol

Proof

Step Hyp Ref Expression
1 cnvimass A × C -1 B dom A × C
2 1 a1i A dom vol C C B A × C -1 B dom A × C
3 cnvimarndm A × C -1 ran A × C = dom A × C
4 fconst6g C B A × C : A B
5 4 adantl A dom vol C C B A × C : A B
6 frn A × C : A B ran A × C B
7 imass2 ran A × C B A × C -1 ran A × C A × C -1 B
8 5 6 7 3syl A dom vol C C B A × C -1 ran A × C A × C -1 B
9 3 8 eqsstrrid A dom vol C C B dom A × C A × C -1 B
10 2 9 eqssd A dom vol C C B A × C -1 B = dom A × C
11 fconstg C A × C : A C
12 11 ad2antlr A dom vol C C B A × C : A C
13 12 fdmd A dom vol C C B dom A × C = A
14 10 13 eqtrd A dom vol C C B A × C -1 B = A
15 simpll A dom vol C C B A dom vol
16 14 15 eqeltrd A dom vol C C B A × C -1 B dom vol
17 11 ad2antlr A dom vol C ¬ C B A × C : A C
18 incom C B = B C
19 simpr A dom vol C ¬ C B ¬ C B
20 disjsn B C = ¬ C B
21 19 20 sylibr A dom vol C ¬ C B B C =
22 18 21 syl5eq A dom vol C ¬ C B C B =
23 fimacnvdisj A × C : A C C B = A × C -1 B =
24 17 22 23 syl2anc A dom vol C ¬ C B A × C -1 B =
25 0mbl dom vol
26 24 25 eqeltrdi A dom vol C ¬ C B A × C -1 B dom vol
27 16 26 pm2.61dan A dom vol C A × C -1 B dom vol