Metamath Proof Explorer


Theorem mbfdm

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbfdm F MblFn dom F dom vol

Proof

Step Hyp Ref Expression
1 ref :
2 mbff F MblFn F : dom F
3 fco : F : dom F F : dom F
4 1 2 3 sylancr F MblFn F : dom F
5 fimacnv F : dom F F -1 = dom F
6 4 5 syl F MblFn F -1 = dom F
7 imaeq2 x = F -1 x = F -1
8 7 eleq1d x = F -1 x dom vol F -1 dom vol
9 ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
10 simpl F -1 x dom vol F -1 x dom vol F -1 x dom vol
11 10 ralimi x ran . F -1 x dom vol F -1 x dom vol x ran . F -1 x dom vol
12 9 11 simplbiim F MblFn x ran . F -1 x dom vol
13 ioomax −∞ +∞ =
14 ioof . : * × * 𝒫
15 ffn . : * × * 𝒫 . Fn * × *
16 14 15 ax-mp . Fn * × *
17 mnfxr −∞ *
18 pnfxr +∞ *
19 fnovrn . Fn * × * −∞ * +∞ * −∞ +∞ ran .
20 16 17 18 19 mp3an −∞ +∞ ran .
21 13 20 eqeltrri ran .
22 21 a1i F MblFn ran .
23 8 12 22 rspcdva F MblFn F -1 dom vol
24 6 23 eqeltrrd F MblFn dom F dom vol