Metamath Proof Explorer


Theorem mbfdm2

Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses mbfmptcl.1 φ x A B MblFn
mbfmptcl.2 φ x A B V
Assertion mbfdm2 φ A dom vol

Proof

Step Hyp Ref Expression
1 mbfmptcl.1 φ x A B MblFn
2 mbfmptcl.2 φ x A B V
3 2 ralrimiva φ x A B V
4 dmmptg x A B V dom x A B = A
5 3 4 syl φ dom x A B = A
6 mbfdm x A B MblFn dom x A B dom vol
7 1 6 syl φ dom x A B dom vol
8 5 7 eqeltrrd φ A dom vol