Metamath Proof Explorer


Theorem mbfeqalem1

Description: Lemma for mbfeqalem2 . (Contributed by Mario Carneiro, 2-Sep-2014) (Revised by AV, 19-Aug-2022)

Ref Expression
Hypotheses mbfeqa.1 φ A
mbfeqa.2 φ vol * A = 0
mbfeqa.3 φ x B A C = D
mbfeqalem.4 φ x B C
mbfeqalem.5 φ x B D
Assertion mbfeqalem1 φ x B C -1 y x B D -1 y dom vol

Proof

Step Hyp Ref Expression
1 mbfeqa.1 φ A
2 mbfeqa.2 φ vol * A = 0
3 mbfeqa.3 φ x B A C = D
4 mbfeqalem.4 φ x B C
5 mbfeqalem.5 φ x B D
6 dfsymdif4 x B C -1 y x B D -1 y = z | ¬ z x B C -1 y z x B D -1 y
7 eldif z B A z B ¬ z A
8 eldifi x B A x B
9 8 4 sylan2 φ x B A C
10 eqid x B C = x B C
11 10 fvmpt2 x B C x B C x = C
12 8 9 11 syl2an2 φ x B A x B C x = C
13 8 5 sylan2 φ x B A D
14 eqid x B D = x B D
15 14 fvmpt2 x B D x B D x = D
16 8 13 15 syl2an2 φ x B A x B D x = D
17 3 12 16 3eqtr4d φ x B A x B C x = x B D x
18 17 ralrimiva φ x B A x B C x = x B D x
19 nfv z x B C x = x B D x
20 nffvmpt1 _ x x B C z
21 nffvmpt1 _ x x B D z
22 20 21 nfeq x x B C z = x B D z
23 fveq2 x = z x B C x = x B C z
24 fveq2 x = z x B D x = x B D z
25 23 24 eqeq12d x = z x B C x = x B D x x B C z = x B D z
26 19 22 25 cbvralw x B A x B C x = x B D x z B A x B C z = x B D z
27 18 26 sylib φ z B A x B C z = x B D z
28 27 r19.21bi φ z B A x B C z = x B D z
29 28 eleq1d φ z B A x B C z y x B D z y
30 7 29 sylan2br φ z B ¬ z A x B C z y x B D z y
31 30 anass1rs φ ¬ z A z B x B C z y x B D z y
32 31 pm5.32da φ ¬ z A z B x B C z y z B x B D z y
33 4 fmpttd φ x B C : B
34 33 ffnd φ x B C Fn B
35 34 adantr φ ¬ z A x B C Fn B
36 elpreima x B C Fn B z x B C -1 y z B x B C z y
37 35 36 syl φ ¬ z A z x B C -1 y z B x B C z y
38 5 fmpttd φ x B D : B
39 38 ffnd φ x B D Fn B
40 39 adantr φ ¬ z A x B D Fn B
41 elpreima x B D Fn B z x B D -1 y z B x B D z y
42 40 41 syl φ ¬ z A z x B D -1 y z B x B D z y
43 32 37 42 3bitr4d φ ¬ z A z x B C -1 y z x B D -1 y
44 43 ex φ ¬ z A z x B C -1 y z x B D -1 y
45 44 con1d φ ¬ z x B C -1 y z x B D -1 y z A
46 45 abssdv φ z | ¬ z x B C -1 y z x B D -1 y A
47 6 46 eqsstrid φ x B C -1 y x B D -1 y A
48 47 difsymssdifssd φ x B C -1 y x B D -1 y A
49 48 1 sstrd φ x B C -1 y x B D -1 y
50 ovolssnul x B C -1 y x B D -1 y A A vol * A = 0 vol * x B C -1 y x B D -1 y = 0
51 48 1 2 50 syl3anc φ vol * x B C -1 y x B D -1 y = 0
52 nulmbl x B C -1 y x B D -1 y vol * x B C -1 y x B D -1 y = 0 x B C -1 y x B D -1 y dom vol
53 49 51 52 syl2anc φ x B C -1 y x B D -1 y dom vol