Step |
Hyp |
Ref |
Expression |
1 |
|
mbfeqa.1 |
|
2 |
|
mbfeqa.2 |
|
3 |
|
mbfeqa.3 |
|
4 |
|
mbfeqalem.4 |
|
5 |
|
mbfeqalem.5 |
|
6 |
|
dfsymdif4 |
|
7 |
|
eldif |
|
8 |
|
eldifi |
|
9 |
8 4
|
sylan2 |
|
10 |
|
eqid |
|
11 |
10
|
fvmpt2 |
|
12 |
8 9 11
|
syl2an2 |
|
13 |
8 5
|
sylan2 |
|
14 |
|
eqid |
|
15 |
14
|
fvmpt2 |
|
16 |
8 13 15
|
syl2an2 |
|
17 |
3 12 16
|
3eqtr4d |
|
18 |
17
|
ralrimiva |
|
19 |
|
nfv |
|
20 |
|
nffvmpt1 |
|
21 |
|
nffvmpt1 |
|
22 |
20 21
|
nfeq |
|
23 |
|
fveq2 |
|
24 |
|
fveq2 |
|
25 |
23 24
|
eqeq12d |
|
26 |
19 22 25
|
cbvralw |
|
27 |
18 26
|
sylib |
|
28 |
27
|
r19.21bi |
|
29 |
28
|
eleq1d |
|
30 |
7 29
|
sylan2br |
|
31 |
30
|
anass1rs |
|
32 |
31
|
pm5.32da |
|
33 |
4
|
fmpttd |
|
34 |
33
|
ffnd |
|
35 |
34
|
adantr |
|
36 |
|
elpreima |
|
37 |
35 36
|
syl |
|
38 |
5
|
fmpttd |
|
39 |
38
|
ffnd |
|
40 |
39
|
adantr |
|
41 |
|
elpreima |
|
42 |
40 41
|
syl |
|
43 |
32 37 42
|
3bitr4d |
|
44 |
43
|
ex |
|
45 |
44
|
con1d |
|
46 |
45
|
abssdv |
|
47 |
6 46
|
eqsstrid |
|
48 |
47
|
difsymssdifssd |
|
49 |
48 1
|
sstrd |
|
50 |
|
ovolssnul |
|
51 |
48 1 2 50
|
syl3anc |
|
52 |
|
nulmbl |
|
53 |
49 51 52
|
syl2anc |
|