Metamath Proof Explorer


Theorem mbff

Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion mbff F MblFn F : dom F

Proof

Step Hyp Ref Expression
1 ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
2 1 simplbi F MblFn F 𝑝𝑚
3 cnex V
4 reex V
5 3 4 elpm2 F 𝑝𝑚 F : dom F dom F
6 5 simplbi F 𝑝𝑚 F : dom F
7 2 6 syl F MblFn F : dom F