Metamath Proof Explorer


Theorem mbfi1fseqlem2

Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φ F MblFn
mbfi1fseq.2 φ F : 0 +∞
mbfi1fseq.3 J = m , y F y 2 m 2 m
mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
Assertion mbfi1fseqlem2 A G A = x if x A A if A J x A A J x A 0

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φ F MblFn
2 mbfi1fseq.2 φ F : 0 +∞
3 mbfi1fseq.3 J = m , y F y 2 m 2 m
4 mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
5 negeq m = A m = A
6 id m = A m = A
7 5 6 oveq12d m = A m m = A A
8 7 eleq2d m = A x m m x A A
9 oveq1 m = A m J x = A J x
10 9 6 breq12d m = A m J x m A J x A
11 10 9 6 ifbieq12d m = A if m J x m m J x m = if A J x A A J x A
12 8 11 ifbieq1d m = A if x m m if m J x m m J x m 0 = if x A A if A J x A A J x A 0
13 12 mpteq2dv m = A x if x m m if m J x m m J x m 0 = x if x A A if A J x A A J x A 0
14 reex V
15 14 mptex x if x A A if A J x A A J x A 0 V
16 13 4 15 fvmpt A G A = x if x A A if A J x A A J x A 0