Metamath Proof Explorer


Theorem mbfi1fseqlem3

Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φ F MblFn
mbfi1fseq.2 φ F : 0 +∞
mbfi1fseq.3 J = m , y F y 2 m 2 m
mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
Assertion mbfi1fseqlem3 φ A G A : ran m 0 A 2 A m 2 A

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φ F MblFn
2 mbfi1fseq.2 φ F : 0 +∞
3 mbfi1fseq.3 J = m , y F y 2 m 2 m
4 mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
5 1 2 3 4 mbfi1fseqlem2 A G A = x if x A A if A J x A A J x A 0
6 5 adantl φ A G A = x if x A A if A J x A A J x A 0
7 rge0ssre 0 +∞
8 simpr m y y
9 ffvelrn F : 0 +∞ y F y 0 +∞
10 2 8 9 syl2an φ m y F y 0 +∞
11 7 10 sselid φ m y F y
12 2nn 2
13 nnnn0 m m 0
14 nnexpcl 2 m 0 2 m
15 12 13 14 sylancr m 2 m
16 15 ad2antrl φ m y 2 m
17 16 nnred φ m y 2 m
18 11 17 remulcld φ m y F y 2 m
19 reflcl F y 2 m F y 2 m
20 18 19 syl φ m y F y 2 m
21 20 16 nndivred φ m y F y 2 m 2 m
22 21 ralrimivva φ m y F y 2 m 2 m
23 3 fmpo m y F y 2 m 2 m J : ×
24 22 23 sylib φ J : ×
25 fovrn J : × A x A J x
26 24 25 syl3an1 φ A x A J x
27 26 3expa φ A x A J x
28 nnre A A
29 28 ad2antlr φ A x A
30 nnnn0 A A 0
31 nnexpcl 2 A 0 2 A
32 12 30 31 sylancr A 2 A
33 32 ad2antlr φ A x 2 A
34 nnre 2 A 2 A
35 nngt0 2 A 0 < 2 A
36 34 35 jca 2 A 2 A 0 < 2 A
37 33 36 syl φ A x 2 A 0 < 2 A
38 lemul1 A J x A 2 A 0 < 2 A A J x A A J x 2 A A 2 A
39 27 29 37 38 syl3anc φ A x A J x A A J x 2 A A 2 A
40 39 biimpa φ A x A J x A A J x 2 A A 2 A
41 simpr m = A y = x y = x
42 41 fveq2d m = A y = x F y = F x
43 simpl m = A y = x m = A
44 43 oveq2d m = A y = x 2 m = 2 A
45 42 44 oveq12d m = A y = x F y 2 m = F x 2 A
46 45 fveq2d m = A y = x F y 2 m = F x 2 A
47 46 44 oveq12d m = A y = x F y 2 m 2 m = F x 2 A 2 A
48 ovex F x 2 A 2 A V
49 47 3 48 ovmpoa A x A J x = F x 2 A 2 A
50 49 ad4ant23 φ A x A J x A A J x = F x 2 A 2 A
51 50 oveq1d φ A x A J x A A J x 2 A = F x 2 A 2 A 2 A
52 2 adantr φ A F : 0 +∞
53 52 ffvelrnda φ A x F x 0 +∞
54 elrege0 F x 0 +∞ F x 0 F x
55 53 54 sylib φ A x F x 0 F x
56 55 simpld φ A x F x
57 33 nnred φ A x 2 A
58 56 57 remulcld φ A x F x 2 A
59 33 nnnn0d φ A x 2 A 0
60 59 nn0ge0d φ A x 0 2 A
61 mulge0 F x 0 F x 2 A 0 2 A 0 F x 2 A
62 55 57 60 61 syl12anc φ A x 0 F x 2 A
63 flge0nn0 F x 2 A 0 F x 2 A F x 2 A 0
64 58 62 63 syl2anc φ A x F x 2 A 0
65 64 adantr φ A x A J x A F x 2 A 0
66 65 nn0cnd φ A x A J x A F x 2 A
67 33 adantr φ A x A J x A 2 A
68 67 nncnd φ A x A J x A 2 A
69 67 nnne0d φ A x A J x A 2 A 0
70 66 68 69 divcan1d φ A x A J x A F x 2 A 2 A 2 A = F x 2 A
71 51 70 eqtrd φ A x A J x A A J x 2 A = F x 2 A
72 71 65 eqeltrd φ A x A J x A A J x 2 A 0
73 nn0uz 0 = 0
74 72 73 eleqtrdi φ A x A J x A A J x 2 A 0
75 nnmulcl A 2 A A 2 A
76 32 75 mpdan A A 2 A
77 76 ad2antlr φ A x A 2 A
78 77 adantr φ A x A J x A A 2 A
79 78 nnzd φ A x A J x A A 2 A
80 elfz5 A J x 2 A 0 A 2 A A J x 2 A 0 A 2 A A J x 2 A A 2 A
81 74 79 80 syl2anc φ A x A J x A A J x 2 A 0 A 2 A A J x 2 A A 2 A
82 40 81 mpbird φ A x A J x A A J x 2 A 0 A 2 A
83 oveq1 m = A J x 2 A m 2 A = A J x 2 A 2 A
84 eqid m 0 A 2 A m 2 A = m 0 A 2 A m 2 A
85 ovex A J x 2 A 2 A V
86 83 84 85 fvmpt A J x 2 A 0 A 2 A m 0 A 2 A m 2 A A J x 2 A = A J x 2 A 2 A
87 82 86 syl φ A x A J x A m 0 A 2 A m 2 A A J x 2 A = A J x 2 A 2 A
88 27 adantr φ A x A J x A A J x
89 88 recnd φ A x A J x A A J x
90 89 68 69 divcan4d φ A x A J x A A J x 2 A 2 A = A J x
91 87 90 eqtrd φ A x A J x A m 0 A 2 A m 2 A A J x 2 A = A J x
92 elfznn0 m 0 A 2 A m 0
93 92 nn0red m 0 A 2 A m
94 32 adantl φ A 2 A
95 nndivre m 2 A m 2 A
96 93 94 95 syl2anr φ A m 0 A 2 A m 2 A
97 96 fmpttd φ A m 0 A 2 A m 2 A : 0 A 2 A
98 97 ffnd φ A m 0 A 2 A m 2 A Fn 0 A 2 A
99 98 adantr φ A x m 0 A 2 A m 2 A Fn 0 A 2 A
100 99 adantr φ A x A J x A m 0 A 2 A m 2 A Fn 0 A 2 A
101 fnfvelrn m 0 A 2 A m 2 A Fn 0 A 2 A A J x 2 A 0 A 2 A m 0 A 2 A m 2 A A J x 2 A ran m 0 A 2 A m 2 A
102 100 82 101 syl2anc φ A x A J x A m 0 A 2 A m 2 A A J x 2 A ran m 0 A 2 A m 2 A
103 91 102 eqeltrrd φ A x A J x A A J x ran m 0 A 2 A m 2 A
104 77 nnnn0d φ A x A 2 A 0
105 104 73 eleqtrdi φ A x A 2 A 0
106 eluzfz2 A 2 A 0 A 2 A 0 A 2 A
107 105 106 syl φ A x A 2 A 0 A 2 A
108 oveq1 m = A 2 A m 2 A = A 2 A 2 A
109 ovex A 2 A 2 A V
110 108 84 109 fvmpt A 2 A 0 A 2 A m 0 A 2 A m 2 A A 2 A = A 2 A 2 A
111 107 110 syl φ A x m 0 A 2 A m 2 A A 2 A = A 2 A 2 A
112 29 recnd φ A x A
113 33 nncnd φ A x 2 A
114 33 nnne0d φ A x 2 A 0
115 112 113 114 divcan4d φ A x A 2 A 2 A = A
116 111 115 eqtrd φ A x m 0 A 2 A m 2 A A 2 A = A
117 fnfvelrn m 0 A 2 A m 2 A Fn 0 A 2 A A 2 A 0 A 2 A m 0 A 2 A m 2 A A 2 A ran m 0 A 2 A m 2 A
118 99 107 117 syl2anc φ A x m 0 A 2 A m 2 A A 2 A ran m 0 A 2 A m 2 A
119 116 118 eqeltrrd φ A x A ran m 0 A 2 A m 2 A
120 119 adantr φ A x ¬ A J x A A ran m 0 A 2 A m 2 A
121 103 120 ifclda φ A x if A J x A A J x A ran m 0 A 2 A m 2 A
122 eluzfz1 A 2 A 0 0 0 A 2 A
123 105 122 syl φ A x 0 0 A 2 A
124 oveq1 m = 0 m 2 A = 0 2 A
125 ovex 0 2 A V
126 124 84 125 fvmpt 0 0 A 2 A m 0 A 2 A m 2 A 0 = 0 2 A
127 123 126 syl φ A x m 0 A 2 A m 2 A 0 = 0 2 A
128 nncn 2 A 2 A
129 nnne0 2 A 2 A 0
130 128 129 div0d 2 A 0 2 A = 0
131 33 130 syl φ A x 0 2 A = 0
132 127 131 eqtrd φ A x m 0 A 2 A m 2 A 0 = 0
133 fnfvelrn m 0 A 2 A m 2 A Fn 0 A 2 A 0 0 A 2 A m 0 A 2 A m 2 A 0 ran m 0 A 2 A m 2 A
134 99 123 133 syl2anc φ A x m 0 A 2 A m 2 A 0 ran m 0 A 2 A m 2 A
135 132 134 eqeltrrd φ A x 0 ran m 0 A 2 A m 2 A
136 121 135 ifcld φ A x if x A A if A J x A A J x A 0 ran m 0 A 2 A m 2 A
137 6 136 fmpt3d φ A G A : ran m 0 A 2 A m 2 A