Step |
Hyp |
Ref |
Expression |
1 |
|
mbfi1fseq.1 |
|
2 |
|
mbfi1fseq.2 |
|
3 |
|
mbfi1fseq.3 |
|
4 |
|
mbfi1fseq.4 |
|
5 |
1 2 3 4
|
mbfi1fseqlem2 |
|
6 |
5
|
adantl |
|
7 |
|
rge0ssre |
|
8 |
|
simpr |
|
9 |
|
ffvelrn |
|
10 |
2 8 9
|
syl2an |
|
11 |
7 10
|
sselid |
|
12 |
|
2nn |
|
13 |
|
nnnn0 |
|
14 |
|
nnexpcl |
|
15 |
12 13 14
|
sylancr |
|
16 |
15
|
ad2antrl |
|
17 |
16
|
nnred |
|
18 |
11 17
|
remulcld |
|
19 |
|
reflcl |
|
20 |
18 19
|
syl |
|
21 |
20 16
|
nndivred |
|
22 |
21
|
ralrimivva |
|
23 |
3
|
fmpo |
|
24 |
22 23
|
sylib |
|
25 |
|
fovrn |
|
26 |
24 25
|
syl3an1 |
|
27 |
26
|
3expa |
|
28 |
|
nnre |
|
29 |
28
|
ad2antlr |
|
30 |
|
nnnn0 |
|
31 |
|
nnexpcl |
|
32 |
12 30 31
|
sylancr |
|
33 |
32
|
ad2antlr |
|
34 |
|
nnre |
|
35 |
|
nngt0 |
|
36 |
34 35
|
jca |
|
37 |
33 36
|
syl |
|
38 |
|
lemul1 |
|
39 |
27 29 37 38
|
syl3anc |
|
40 |
39
|
biimpa |
|
41 |
|
simpr |
|
42 |
41
|
fveq2d |
|
43 |
|
simpl |
|
44 |
43
|
oveq2d |
|
45 |
42 44
|
oveq12d |
|
46 |
45
|
fveq2d |
|
47 |
46 44
|
oveq12d |
|
48 |
|
ovex |
|
49 |
47 3 48
|
ovmpoa |
|
50 |
49
|
ad4ant23 |
|
51 |
50
|
oveq1d |
|
52 |
2
|
adantr |
|
53 |
52
|
ffvelrnda |
|
54 |
|
elrege0 |
|
55 |
53 54
|
sylib |
|
56 |
55
|
simpld |
|
57 |
33
|
nnred |
|
58 |
56 57
|
remulcld |
|
59 |
33
|
nnnn0d |
|
60 |
59
|
nn0ge0d |
|
61 |
|
mulge0 |
|
62 |
55 57 60 61
|
syl12anc |
|
63 |
|
flge0nn0 |
|
64 |
58 62 63
|
syl2anc |
|
65 |
64
|
adantr |
|
66 |
65
|
nn0cnd |
|
67 |
33
|
adantr |
|
68 |
67
|
nncnd |
|
69 |
67
|
nnne0d |
|
70 |
66 68 69
|
divcan1d |
|
71 |
51 70
|
eqtrd |
|
72 |
71 65
|
eqeltrd |
|
73 |
|
nn0uz |
|
74 |
72 73
|
eleqtrdi |
|
75 |
|
nnmulcl |
|
76 |
32 75
|
mpdan |
|
77 |
76
|
ad2antlr |
|
78 |
77
|
adantr |
|
79 |
78
|
nnzd |
|
80 |
|
elfz5 |
|
81 |
74 79 80
|
syl2anc |
|
82 |
40 81
|
mpbird |
|
83 |
|
oveq1 |
|
84 |
|
eqid |
|
85 |
|
ovex |
|
86 |
83 84 85
|
fvmpt |
|
87 |
82 86
|
syl |
|
88 |
27
|
adantr |
|
89 |
88
|
recnd |
|
90 |
89 68 69
|
divcan4d |
|
91 |
87 90
|
eqtrd |
|
92 |
|
elfznn0 |
|
93 |
92
|
nn0red |
|
94 |
32
|
adantl |
|
95 |
|
nndivre |
|
96 |
93 94 95
|
syl2anr |
|
97 |
96
|
fmpttd |
|
98 |
97
|
ffnd |
|
99 |
98
|
adantr |
|
100 |
99
|
adantr |
|
101 |
|
fnfvelrn |
|
102 |
100 82 101
|
syl2anc |
|
103 |
91 102
|
eqeltrrd |
|
104 |
77
|
nnnn0d |
|
105 |
104 73
|
eleqtrdi |
|
106 |
|
eluzfz2 |
|
107 |
105 106
|
syl |
|
108 |
|
oveq1 |
|
109 |
|
ovex |
|
110 |
108 84 109
|
fvmpt |
|
111 |
107 110
|
syl |
|
112 |
29
|
recnd |
|
113 |
33
|
nncnd |
|
114 |
33
|
nnne0d |
|
115 |
112 113 114
|
divcan4d |
|
116 |
111 115
|
eqtrd |
|
117 |
|
fnfvelrn |
|
118 |
99 107 117
|
syl2anc |
|
119 |
116 118
|
eqeltrrd |
|
120 |
119
|
adantr |
|
121 |
103 120
|
ifclda |
|
122 |
|
eluzfz1 |
|
123 |
105 122
|
syl |
|
124 |
|
oveq1 |
|
125 |
|
ovex |
|
126 |
124 84 125
|
fvmpt |
|
127 |
123 126
|
syl |
|
128 |
|
nncn |
|
129 |
|
nnne0 |
|
130 |
128 129
|
div0d |
|
131 |
33 130
|
syl |
|
132 |
127 131
|
eqtrd |
|
133 |
|
fnfvelrn |
|
134 |
99 123 133
|
syl2anc |
|
135 |
132 134
|
eqeltrrd |
|
136 |
121 135
|
ifcld |
|
137 |
6 136
|
fmpt3d |
|