Metamath Proof Explorer


Theorem mbfi1fseqlem4

Description: Lemma for mbfi1fseq . This lemma is not as interesting as it is long - it is simply checking that G is in fact a sequence of simple functions, by verifying that its range is in ( 0 ... n 2 ^ n ) / ( 2 ^ n ) (which is to say, the numbers from 0 to n in increments of 1 / ( 2 ^ n ) ), and also that the preimage of each point k is measurable, because it is equal to ( -u n , n ) i^i (`' F " ( k [,) k + 1 / ( 2 ^ n ) ) ) for k < n and ( -u n , n ) i^i ( ``' F " ( k [,) +oo ) ) for k = n ` . (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φ F MblFn
mbfi1fseq.2 φ F : 0 +∞
mbfi1fseq.3 J = m , y F y 2 m 2 m
mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
Assertion mbfi1fseqlem4 φ G : dom 1

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φ F MblFn
2 mbfi1fseq.2 φ F : 0 +∞
3 mbfi1fseq.3 J = m , y F y 2 m 2 m
4 mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
5 reex V
6 5 mptex x if x m m if m J x m m J x m 0 V
7 6 4 fnmpti G Fn
8 7 a1i φ G Fn
9 1 2 3 4 mbfi1fseqlem3 φ n G n : ran m 0 n 2 n m 2 n
10 elfznn0 m 0 n 2 n m 0
11 10 nn0red m 0 n 2 n m
12 2nn 2
13 nnnn0 n n 0
14 nnexpcl 2 n 0 2 n
15 12 13 14 sylancr n 2 n
16 15 adantl φ n 2 n
17 nndivre m 2 n m 2 n
18 11 16 17 syl2anr φ n m 0 n 2 n m 2 n
19 18 fmpttd φ n m 0 n 2 n m 2 n : 0 n 2 n
20 19 frnd φ n ran m 0 n 2 n m 2 n
21 9 20 fssd φ n G n :
22 fzfid φ n 0 n 2 n Fin
23 19 ffnd φ n m 0 n 2 n m 2 n Fn 0 n 2 n
24 dffn4 m 0 n 2 n m 2 n Fn 0 n 2 n m 0 n 2 n m 2 n : 0 n 2 n onto ran m 0 n 2 n m 2 n
25 23 24 sylib φ n m 0 n 2 n m 2 n : 0 n 2 n onto ran m 0 n 2 n m 2 n
26 fofi 0 n 2 n Fin m 0 n 2 n m 2 n : 0 n 2 n onto ran m 0 n 2 n m 2 n ran m 0 n 2 n m 2 n Fin
27 22 25 26 syl2anc φ n ran m 0 n 2 n m 2 n Fin
28 9 frnd φ n ran G n ran m 0 n 2 n m 2 n
29 27 28 ssfid φ n ran G n Fin
30 1 2 3 4 mbfi1fseqlem2 n G n = x if x n n if n J x n n J x n 0
31 30 fveq1d n G n x = x if x n n if n J x n n J x n 0 x
32 31 ad2antlr φ n x G n x = x if x n n if n J x n n J x n 0 x
33 simpr φ n x x
34 ovex n J x V
35 vex n V
36 34 35 ifex if n J x n n J x n V
37 c0ex 0 V
38 36 37 ifex if x n n if n J x n n J x n 0 V
39 eqid x if x n n if n J x n n J x n 0 = x if x n n if n J x n n J x n 0
40 39 fvmpt2 x if x n n if n J x n n J x n 0 V x if x n n if n J x n n J x n 0 x = if x n n if n J x n n J x n 0
41 33 38 40 sylancl φ n x x if x n n if n J x n n J x n 0 x = if x n n if n J x n n J x n 0
42 32 41 eqtrd φ n x G n x = if x n n if n J x n n J x n 0
43 42 adantlr φ n k ran G n 0 x G n x = if x n n if n J x n n J x n 0
44 43 eqeq1d φ n k ran G n 0 x G n x = k if x n n if n J x n n J x n 0 = k
45 eldifsni k ran G n 0 k 0
46 45 ad2antlr φ n k ran G n 0 x k 0
47 neeq1 if x n n if n J x n n J x n 0 = k if x n n if n J x n n J x n 0 0 k 0
48 46 47 syl5ibrcom φ n k ran G n 0 x if x n n if n J x n n J x n 0 = k if x n n if n J x n n J x n 0 0
49 iffalse ¬ x n n if x n n if n J x n n J x n 0 = 0
50 49 necon1ai if x n n if n J x n n J x n 0 0 x n n
51 48 50 syl6 φ n k ran G n 0 x if x n n if n J x n n J x n 0 = k x n n
52 51 pm4.71rd φ n k ran G n 0 x if x n n if n J x n n J x n 0 = k x n n if x n n if n J x n n J x n 0 = k
53 iftrue x n n if x n n if n J x n n J x n 0 = if n J x n n J x n
54 53 eqeq1d x n n if x n n if n J x n n J x n 0 = k if n J x n n J x n = k
55 simpllr φ n k ran G n 0 x n
56 55 nnred φ n k ran G n 0 x n
57 56 adantr φ n k ran G n 0 x k = n n
58 rge0ssre 0 +∞
59 simpr m y y
60 ffvelrn F : 0 +∞ y F y 0 +∞
61 2 59 60 syl2an φ m y F y 0 +∞
62 58 61 sseldi φ m y F y
63 nnnn0 m m 0
64 nnexpcl 2 m 0 2 m
65 12 63 64 sylancr m 2 m
66 65 ad2antrl φ m y 2 m
67 66 nnred φ m y 2 m
68 62 67 remulcld φ m y F y 2 m
69 reflcl F y 2 m F y 2 m
70 68 69 syl φ m y F y 2 m
71 70 66 nndivred φ m y F y 2 m 2 m
72 71 ralrimivva φ m y F y 2 m 2 m
73 3 fmpo m y F y 2 m 2 m J : ×
74 72 73 sylib φ J : ×
75 fovrn J : × n x n J x
76 74 75 syl3an1 φ n x n J x
77 76 3expa φ n x n J x
78 77 adantlr φ n k ran G n 0 x n J x
79 78 adantr φ n k ran G n 0 x k = n n J x
80 lemin n n J x n n if n J x n n J x n n n J x n n
81 57 79 57 80 syl3anc φ n k ran G n 0 x k = n n if n J x n n J x n n n J x n n
82 79 57 ifcld φ n k ran G n 0 x k = n if n J x n n J x n
83 82 57 letri3d φ n k ran G n 0 x k = n if n J x n n J x n = n if n J x n n J x n n n if n J x n n J x n
84 simpr φ n k ran G n 0 x k = n k = n
85 84 eqeq2d φ n k ran G n 0 x k = n if n J x n n J x n = k if n J x n n J x n = n
86 min2 n J x n if n J x n n J x n n
87 79 57 86 syl2anc φ n k ran G n 0 x k = n if n J x n n J x n n
88 87 biantrurd φ n k ran G n 0 x k = n n if n J x n n J x n if n J x n n J x n n n if n J x n n J x n
89 83 85 88 3bitr4d φ n k ran G n 0 x k = n if n J x n n J x n = k n if n J x n n J x n
90 57 leidd φ n k ran G n 0 x k = n n n
91 90 biantrud φ n k ran G n 0 x k = n n n J x n n J x n n
92 81 89 91 3bitr4d φ n k ran G n 0 x k = n if n J x n n J x n = k n n J x
93 breq1 k = n k F x n F x
94 2 adantr φ n F : 0 +∞
95 94 ffvelrnda φ n x F x 0 +∞
96 elrege0 F x 0 +∞ F x 0 F x
97 95 96 sylib φ n x F x 0 F x
98 97 simpld φ n x F x
99 98 adantlr φ n k ran G n 0 x F x
100 55 15 syl φ n k ran G n 0 x 2 n
101 100 nnred φ n k ran G n 0 x 2 n
102 99 101 remulcld φ n k ran G n 0 x F x 2 n
103 reflcl F x 2 n F x 2 n
104 102 103 syl φ n k ran G n 0 x F x 2 n
105 100 nngt0d φ n k ran G n 0 x 0 < 2 n
106 lemuldiv n F x 2 n 2 n 0 < 2 n n 2 n F x 2 n n F x 2 n 2 n
107 56 104 101 105 106 syl112anc φ n k ran G n 0 x n 2 n F x 2 n n F x 2 n 2 n
108 lemul1 n F x 2 n 0 < 2 n n F x n 2 n F x 2 n
109 56 99 101 105 108 syl112anc φ n k ran G n 0 x n F x n 2 n F x 2 n
110 nnmulcl n 2 n n 2 n
111 55 15 110 syl2anc2 φ n k ran G n 0 x n 2 n
112 111 nnzd φ n k ran G n 0 x n 2 n
113 flge F x 2 n n 2 n n 2 n F x 2 n n 2 n F x 2 n
114 102 112 113 syl2anc φ n k ran G n 0 x n 2 n F x 2 n n 2 n F x 2 n
115 109 114 bitrd φ n k ran G n 0 x n F x n 2 n F x 2 n
116 simpr φ n k ran G n 0 x x
117 simpr m = n y = x y = x
118 117 fveq2d m = n y = x F y = F x
119 simpl m = n y = x m = n
120 119 oveq2d m = n y = x 2 m = 2 n
121 118 120 oveq12d m = n y = x F y 2 m = F x 2 n
122 121 fveq2d m = n y = x F y 2 m = F x 2 n
123 122 120 oveq12d m = n y = x F y 2 m 2 m = F x 2 n 2 n
124 ovex F x 2 n 2 n V
125 123 3 124 ovmpoa n x n J x = F x 2 n 2 n
126 55 116 125 syl2anc φ n k ran G n 0 x n J x = F x 2 n 2 n
127 126 breq2d φ n k ran G n 0 x n n J x n F x 2 n 2 n
128 107 115 127 3bitr4d φ n k ran G n 0 x n F x n n J x
129 93 128 sylan9bbr φ n k ran G n 0 x k = n k F x n n J x
130 116 adantr φ n k ran G n 0 x k = n x
131 iftrue k = n if k = n F -1 −∞ k + 1 2 n =
132 131 adantl φ n k ran G n 0 x k = n if k = n F -1 −∞ k + 1 2 n =
133 130 132 eleqtrrd φ n k ran G n 0 x k = n x if k = n F -1 −∞ k + 1 2 n
134 133 biantrurd φ n k ran G n 0 x k = n k F x x if k = n F -1 −∞ k + 1 2 n k F x
135 92 129 134 3bitr2d φ n k ran G n 0 x k = n if n J x n n J x n = k x if k = n F -1 −∞ k + 1 2 n k F x
136 28 ssdifssd φ n ran G n 0 ran m 0 n 2 n m 2 n
137 136 sselda φ n k ran G n 0 k ran m 0 n 2 n m 2 n
138 eqid m 0 n 2 n m 2 n = m 0 n 2 n m 2 n
139 138 rnmpt ran m 0 n 2 n m 2 n = k | m 0 n 2 n k = m 2 n
140 139 abeq2i k ran m 0 n 2 n m 2 n m 0 n 2 n k = m 2 n
141 elfzelz m 0 n 2 n m
142 141 adantl φ n m 0 n 2 n m
143 142 zcnd φ n m 0 n 2 n m
144 15 ad2antlr φ n m 0 n 2 n 2 n
145 144 nncnd φ n m 0 n 2 n 2 n
146 144 nnne0d φ n m 0 n 2 n 2 n 0
147 143 145 146 divcan1d φ n m 0 n 2 n m 2 n 2 n = m
148 147 142 eqeltrd φ n m 0 n 2 n m 2 n 2 n
149 oveq1 k = m 2 n k 2 n = m 2 n 2 n
150 149 eleq1d k = m 2 n k 2 n m 2 n 2 n
151 148 150 syl5ibrcom φ n m 0 n 2 n k = m 2 n k 2 n
152 151 rexlimdva φ n m 0 n 2 n k = m 2 n k 2 n
153 140 152 syl5bi φ n k ran m 0 n 2 n m 2 n k 2 n
154 153 imp φ n k ran m 0 n 2 n m 2 n k 2 n
155 137 154 syldan φ n k ran G n 0 k 2 n
156 155 adantr φ n k ran G n 0 x k 2 n
157 flbi F x 2 n k 2 n F x 2 n = k 2 n k 2 n F x 2 n F x 2 n < k 2 n + 1
158 102 156 157 syl2anc φ n k ran G n 0 x F x 2 n = k 2 n k 2 n F x 2 n F x 2 n < k 2 n + 1
159 158 adantr φ n k ran G n 0 x k n F x 2 n = k 2 n k 2 n F x 2 n F x 2 n < k 2 n + 1
160 neeq1 if n J x n n J x n = k if n J x n n J x n n k n
161 160 biimparc k n if n J x n n J x n = k if n J x n n J x n n
162 iffalse ¬ n J x n if n J x n n J x n = n
163 162 necon1ai if n J x n n J x n n n J x n
164 161 163 syl k n if n J x n n J x n = k n J x n
165 164 iftrued k n if n J x n n J x n = k if n J x n n J x n = n J x
166 simpr k n if n J x n n J x n = k if n J x n n J x n = k
167 165 166 eqtr3d k n if n J x n n J x n = k n J x = k
168 167 164 eqbrtrrd k n if n J x n n J x n = k k n
169 168 167 jca k n if n J x n n J x n = k k n n J x = k
170 169 ex k n if n J x n n J x n = k k n n J x = k
171 breq1 n J x = k n J x n k n
172 171 biimparc k n n J x = k n J x n
173 172 iftrued k n n J x = k if n J x n n J x n = n J x
174 simpr k n n J x = k n J x = k
175 173 174 eqtrd k n n J x = k if n J x n n J x n = k
176 170 175 impbid1 k n if n J x n n J x n = k k n n J x = k
177 176 adantl φ n k ran G n 0 x k n if n J x n n J x n = k k n n J x = k
178 eldifi k ran G n 0 k ran G n
179 nnre n n
180 179 ad2antlr φ n x n
181 77 180 86 syl2anc φ n x if n J x n n J x n n
182 13 ad2antlr φ n x n 0
183 182 nn0ge0d φ n x 0 n
184 breq1 if n J x n n J x n = if x n n if n J x n n J x n 0 if n J x n n J x n n if x n n if n J x n n J x n 0 n
185 breq1 0 = if x n n if n J x n n J x n 0 0 n if x n n if n J x n n J x n 0 n
186 184 185 ifboth if n J x n n J x n n 0 n if x n n if n J x n n J x n 0 n
187 181 183 186 syl2anc φ n x if x n n if n J x n n J x n 0 n
188 42 187 eqbrtrd φ n x G n x n
189 188 ralrimiva φ n x G n x n
190 9 ffnd φ n G n Fn
191 breq1 k = G n x k n G n x n
192 191 ralrn G n Fn k ran G n k n x G n x n
193 190 192 syl φ n k ran G n k n x G n x n
194 189 193 mpbird φ n k ran G n k n
195 194 r19.21bi φ n k ran G n k n
196 178 195 sylan2 φ n k ran G n 0 k n
197 196 ad2antrr φ n k ran G n 0 x k n k n
198 197 biantrurd φ n k ran G n 0 x k n n J x = k k n n J x = k
199 126 eqeq1d φ n k ran G n 0 x n J x = k F x 2 n 2 n = k
200 104 recnd φ n k ran G n 0 x F x 2 n
201 28 20 sstrd φ n ran G n
202 201 ssdifssd φ n ran G n 0
203 202 sselda φ n k ran G n 0 k
204 203 adantr φ n k ran G n 0 x k
205 204 recnd φ n k ran G n 0 x k
206 100 nncnd φ n k ran G n 0 x 2 n
207 100 nnne0d φ n k ran G n 0 x 2 n 0
208 200 205 206 207 divmul3d φ n k ran G n 0 x F x 2 n 2 n = k F x 2 n = k 2 n
209 199 208 bitrd φ n k ran G n 0 x n J x = k F x 2 n = k 2 n
210 209 adantr φ n k ran G n 0 x k n n J x = k F x 2 n = k 2 n
211 177 198 210 3bitr2d φ n k ran G n 0 x k n if n J x n n J x n = k F x 2 n = k 2 n
212 ifnefalse k n if k = n F -1 −∞ k + 1 2 n = F -1 −∞ k + 1 2 n
213 212 eleq2d k n x if k = n F -1 −∞ k + 1 2 n x F -1 −∞ k + 1 2 n
214 100 nnrecred φ n k ran G n 0 x 1 2 n
215 204 214 readdcld φ n k ran G n 0 x k + 1 2 n
216 215 rexrd φ n k ran G n 0 x k + 1 2 n *
217 elioomnf k + 1 2 n * F x −∞ k + 1 2 n F x F x < k + 1 2 n
218 216 217 syl φ n k ran G n 0 x F x −∞ k + 1 2 n F x F x < k + 1 2 n
219 94 ad2antrr φ n k ran G n 0 x F : 0 +∞
220 219 ffnd φ n k ran G n 0 x F Fn
221 elpreima F Fn x F -1 −∞ k + 1 2 n x F x −∞ k + 1 2 n
222 220 221 syl φ n k ran G n 0 x x F -1 −∞ k + 1 2 n x F x −∞ k + 1 2 n
223 116 222 mpbirand φ n k ran G n 0 x x F -1 −∞ k + 1 2 n F x −∞ k + 1 2 n
224 99 biantrurd φ n k ran G n 0 x F x < k + 1 2 n F x F x < k + 1 2 n
225 218 223 224 3bitr4d φ n k ran G n 0 x x F -1 −∞ k + 1 2 n F x < k + 1 2 n
226 ltmul1 F x k + 1 2 n 2 n 0 < 2 n F x < k + 1 2 n F x 2 n < k + 1 2 n 2 n
227 99 215 101 105 226 syl112anc φ n k ran G n 0 x F x < k + 1 2 n F x 2 n < k + 1 2 n 2 n
228 214 recnd φ n k ran G n 0 x 1 2 n
229 206 207 recid2d φ n k ran G n 0 x 1 2 n 2 n = 1
230 229 oveq2d φ n k ran G n 0 x k 2 n + 1 2 n 2 n = k 2 n + 1
231 205 206 228 230 joinlmuladdmuld φ n k ran G n 0 x k + 1 2 n 2 n = k 2 n + 1
232 231 breq2d φ n k ran G n 0 x F x 2 n < k + 1 2 n 2 n F x 2 n < k 2 n + 1
233 225 227 232 3bitrd φ n k ran G n 0 x x F -1 −∞ k + 1 2 n F x 2 n < k 2 n + 1
234 213 233 sylan9bbr φ n k ran G n 0 x k n x if k = n F -1 −∞ k + 1 2 n F x 2 n < k 2 n + 1
235 lemul1 k F x 2 n 0 < 2 n k F x k 2 n F x 2 n
236 204 99 101 105 235 syl112anc φ n k ran G n 0 x k F x k 2 n F x 2 n
237 236 adantr φ n k ran G n 0 x k n k F x k 2 n F x 2 n
238 234 237 anbi12d φ n k ran G n 0 x k n x if k = n F -1 −∞ k + 1 2 n k F x F x 2 n < k 2 n + 1 k 2 n F x 2 n
239 238 biancomd φ n k ran G n 0 x k n x if k = n F -1 −∞ k + 1 2 n k F x k 2 n F x 2 n F x 2 n < k 2 n + 1
240 159 211 239 3bitr4d φ n k ran G n 0 x k n if n J x n n J x n = k x if k = n F -1 −∞ k + 1 2 n k F x
241 135 240 pm2.61dane φ n k ran G n 0 x if n J x n n J x n = k x if k = n F -1 −∞ k + 1 2 n k F x
242 eldif x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k x if k = n F -1 −∞ k + 1 2 n ¬ x F -1 −∞ k
243 204 rexrd φ n k ran G n 0 x k *
244 elioomnf k * F x −∞ k F x F x < k
245 243 244 syl φ n k ran G n 0 x F x −∞ k F x F x < k
246 elpreima F Fn x F -1 −∞ k x F x −∞ k
247 220 246 syl φ n k ran G n 0 x x F -1 −∞ k x F x −∞ k
248 116 247 mpbirand φ n k ran G n 0 x x F -1 −∞ k F x −∞ k
249 99 biantrurd φ n k ran G n 0 x F x < k F x F x < k
250 245 248 249 3bitr4d φ n k ran G n 0 x x F -1 −∞ k F x < k
251 250 notbid φ n k ran G n 0 x ¬ x F -1 −∞ k ¬ F x < k
252 204 99 lenltd φ n k ran G n 0 x k F x ¬ F x < k
253 251 252 bitr4d φ n k ran G n 0 x ¬ x F -1 −∞ k k F x
254 253 anbi2d φ n k ran G n 0 x x if k = n F -1 −∞ k + 1 2 n ¬ x F -1 −∞ k x if k = n F -1 −∞ k + 1 2 n k F x
255 242 254 syl5bb φ n k ran G n 0 x x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k x if k = n F -1 −∞ k + 1 2 n k F x
256 241 255 bitr4d φ n k ran G n 0 x if n J x n n J x n = k x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
257 54 256 sylan9bbr φ n k ran G n 0 x x n n if x n n if n J x n n J x n 0 = k x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
258 257 pm5.32da φ n k ran G n 0 x x n n if x n n if n J x n n J x n 0 = k x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
259 44 52 258 3bitrd φ n k ran G n 0 x G n x = k x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
260 259 pm5.32da φ n k ran G n 0 x G n x = k x x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
261 21 adantr φ n k ran G n 0 G n :
262 261 ffnd φ n k ran G n 0 G n Fn
263 fniniseg G n Fn x G n -1 k x G n x = k
264 262 263 syl φ n k ran G n 0 x G n -1 k x G n x = k
265 elin x n n if k = n F -1 −∞ k + 1 2 n F -1 −∞ k x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
266 179 ad2antlr φ n k ran G n 0 n
267 266 renegcld φ n k ran G n 0 n
268 iccmbl n n n n dom vol
269 267 266 268 syl2anc φ n k ran G n 0 n n dom vol
270 mblss n n dom vol n n
271 269 270 syl φ n k ran G n 0 n n
272 271 sseld φ n k ran G n 0 x n n x
273 272 adantrd φ n k ran G n 0 x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k x
274 273 pm4.71rd φ n k ran G n 0 x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k x x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
275 265 274 syl5bb φ n k ran G n 0 x n n if k = n F -1 −∞ k + 1 2 n F -1 −∞ k x x n n x if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
276 260 264 275 3bitr4d φ n k ran G n 0 x G n -1 k x n n if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
277 276 eqrdv φ n k ran G n 0 G n -1 k = n n if k = n F -1 −∞ k + 1 2 n F -1 −∞ k
278 rembl dom vol
279 fss F : 0 +∞ 0 +∞ F :
280 2 58 279 sylancl φ F :
281 mbfima F MblFn F : F -1 −∞ k + 1 2 n dom vol
282 1 280 281 syl2anc φ F -1 −∞ k + 1 2 n dom vol
283 ifcl dom vol F -1 −∞ k + 1 2 n dom vol if k = n F -1 −∞ k + 1 2 n dom vol
284 278 282 283 sylancr φ if k = n F -1 −∞ k + 1 2 n dom vol
285 mbfima F MblFn F : F -1 −∞ k dom vol
286 1 280 285 syl2anc φ F -1 −∞ k dom vol
287 difmbl if k = n F -1 −∞ k + 1 2 n dom vol F -1 −∞ k dom vol if k = n F -1 −∞ k + 1 2 n F -1 −∞ k dom vol
288 284 286 287 syl2anc φ if k = n F -1 −∞ k + 1 2 n F -1 −∞ k dom vol
289 288 ad2antrr φ n k ran G n 0 if k = n F -1 −∞ k + 1 2 n F -1 −∞ k dom vol
290 inmbl n n dom vol if k = n F -1 −∞ k + 1 2 n F -1 −∞ k dom vol n n if k = n F -1 −∞ k + 1 2 n F -1 −∞ k dom vol
291 269 289 290 syl2anc φ n k ran G n 0 n n if k = n F -1 −∞ k + 1 2 n F -1 −∞ k dom vol
292 277 291 eqeltrd φ n k ran G n 0 G n -1 k dom vol
293 mblvol G n -1 k dom vol vol G n -1 k = vol * G n -1 k
294 292 293 syl φ n k ran G n 0 vol G n -1 k = vol * G n -1 k
295 190 adantr φ n k ran G n 0 G n Fn
296 295 263 syl φ n k ran G n 0 x G n -1 k x G n x = k
297 77 180 ifcld φ n x if n J x n n J x n
298 0re 0
299 ifcl if n J x n n J x n 0 if x n n if n J x n n J x n 0
300 297 298 299 sylancl φ n x if x n n if n J x n n J x n 0
301 39 fvmpt2 x if x n n if n J x n n J x n 0 x if x n n if n J x n n J x n 0 x = if x n n if n J x n n J x n 0
302 33 300 301 syl2anc φ n x x if x n n if n J x n n J x n 0 x = if x n n if n J x n n J x n 0
303 32 302 eqtrd φ n x G n x = if x n n if n J x n n J x n 0
304 303 adantlr φ n k ran G n 0 x G n x = if x n n if n J x n n J x n 0
305 304 eqeq1d φ n k ran G n 0 x G n x = k if x n n if n J x n n J x n 0 = k
306 305 51 sylbid φ n k ran G n 0 x G n x = k x n n
307 306 expimpd φ n k ran G n 0 x G n x = k x n n
308 296 307 sylbid φ n k ran G n 0 x G n -1 k x n n
309 308 ssrdv φ n k ran G n 0 G n -1 k n n
310 iccssre n n n n
311 267 266 310 syl2anc φ n k ran G n 0 n n
312 mblvol n n dom vol vol n n = vol * n n
313 269 312 syl φ n k ran G n 0 vol n n = vol * n n
314 iccvolcl n n vol n n
315 267 266 314 syl2anc φ n k ran G n 0 vol n n
316 313 315 eqeltrrd φ n k ran G n 0 vol * n n
317 ovolsscl G n -1 k n n n n vol * n n vol * G n -1 k
318 309 311 316 317 syl3anc φ n k ran G n 0 vol * G n -1 k
319 294 318 eqeltrd φ n k ran G n 0 vol G n -1 k
320 21 29 292 319 i1fd φ n G n dom 1
321 320 ralrimiva φ n G n dom 1
322 ffnfv G : dom 1 G Fn n G n dom 1
323 8 321 322 sylanbrc φ G : dom 1