Metamath Proof Explorer


Theorem mbfi1fseqlem5

Description: Lemma for mbfi1fseq . Verify that G describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φ F MblFn
mbfi1fseq.2 φ F : 0 +∞
mbfi1fseq.3 J = m , y F y 2 m 2 m
mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
Assertion mbfi1fseqlem5 φ A 0 𝑝 f G A G A f G A + 1

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φ F MblFn
2 mbfi1fseq.2 φ F : 0 +∞
3 mbfi1fseq.3 J = m , y F y 2 m 2 m
4 mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
5 2 adantr φ A F : 0 +∞
6 5 ffvelrnda φ A x F x 0 +∞
7 elrege0 F x 0 +∞ F x 0 F x
8 6 7 sylib φ A x F x 0 F x
9 8 simpld φ A x F x
10 2nn 2
11 nnnn0 A A 0
12 nnexpcl 2 A 0 2 A
13 10 11 12 sylancr A 2 A
14 13 ad2antlr φ A x 2 A
15 14 nnred φ A x 2 A
16 9 15 remulcld φ A x F x 2 A
17 14 nnnn0d φ A x 2 A 0
18 17 nn0ge0d φ A x 0 2 A
19 mulge0 F x 0 F x 2 A 0 2 A 0 F x 2 A
20 8 15 18 19 syl12anc φ A x 0 F x 2 A
21 flge0nn0 F x 2 A 0 F x 2 A F x 2 A 0
22 16 20 21 syl2anc φ A x F x 2 A 0
23 22 nn0red φ A x F x 2 A
24 22 nn0ge0d φ A x 0 F x 2 A
25 14 nngt0d φ A x 0 < 2 A
26 divge0 F x 2 A 0 F x 2 A 2 A 0 < 2 A 0 F x 2 A 2 A
27 23 24 15 25 26 syl22anc φ A x 0 F x 2 A 2 A
28 simpr m = A y = x y = x
29 28 fveq2d m = A y = x F y = F x
30 simpl m = A y = x m = A
31 30 oveq2d m = A y = x 2 m = 2 A
32 29 31 oveq12d m = A y = x F y 2 m = F x 2 A
33 32 fveq2d m = A y = x F y 2 m = F x 2 A
34 33 31 oveq12d m = A y = x F y 2 m 2 m = F x 2 A 2 A
35 ovex F x 2 A 2 A V
36 34 3 35 ovmpoa A x A J x = F x 2 A 2 A
37 36 adantll φ A x A J x = F x 2 A 2 A
38 27 37 breqtrrd φ A x 0 A J x
39 11 nn0ge0d A 0 A
40 39 ad2antlr φ A x 0 A
41 breq2 A J x = if A J x A A J x A 0 A J x 0 if A J x A A J x A
42 breq2 A = if A J x A A J x A 0 A 0 if A J x A A J x A
43 41 42 ifboth 0 A J x 0 A 0 if A J x A A J x A
44 38 40 43 syl2anc φ A x 0 if A J x A A J x A
45 0le0 0 0
46 breq2 if A J x A A J x A = if x A A if A J x A A J x A 0 0 if A J x A A J x A 0 if x A A if A J x A A J x A 0
47 breq2 0 = if x A A if A J x A A J x A 0 0 0 0 if x A A if A J x A A J x A 0
48 46 47 ifboth 0 if A J x A A J x A 0 0 0 if x A A if A J x A A J x A 0
49 44 45 48 sylancl φ A x 0 if x A A if A J x A A J x A 0
50 49 ralrimiva φ A x 0 if x A A if A J x A A J x A 0
51 0re 0
52 fnconstg 0 × 0 Fn
53 51 52 ax-mp × 0 Fn
54 df-0p 0 𝑝 = × 0
55 54 fneq1i 0 𝑝 Fn × 0 Fn
56 53 55 mpbir 0 𝑝 Fn
57 56 a1i φ A 0 𝑝 Fn
58 1 2 3 4 mbfi1fseqlem4 φ G : dom 1
59 58 ffvelrnda φ A G A dom 1
60 i1ff G A dom 1 G A :
61 ffn G A : G A Fn
62 59 60 61 3syl φ A G A Fn
63 cnex V
64 63 a1i φ A V
65 reex V
66 65 a1i φ A V
67 ax-resscn
68 sseqin2 =
69 67 68 mpbi =
70 0pval x 0 𝑝 x = 0
71 70 adantl φ A x 0 𝑝 x = 0
72 1 2 3 4 mbfi1fseqlem2 A G A = x if x A A if A J x A A J x A 0
73 72 fveq1d A G A x = x if x A A if A J x A A J x A 0 x
74 73 ad2antlr φ A x G A x = x if x A A if A J x A A J x A 0 x
75 simpr φ A x x
76 rge0ssre 0 +∞
77 simpr m y y
78 ffvelrn F : 0 +∞ y F y 0 +∞
79 2 77 78 syl2an φ m y F y 0 +∞
80 76 79 sselid φ m y F y
81 nnnn0 m m 0
82 nnexpcl 2 m 0 2 m
83 10 81 82 sylancr m 2 m
84 83 ad2antrl φ m y 2 m
85 84 nnred φ m y 2 m
86 80 85 remulcld φ m y F y 2 m
87 reflcl F y 2 m F y 2 m
88 86 87 syl φ m y F y 2 m
89 88 84 nndivred φ m y F y 2 m 2 m
90 89 ralrimivva φ m y F y 2 m 2 m
91 3 fmpo m y F y 2 m 2 m J : ×
92 90 91 sylib φ J : ×
93 fovrn J : × A x A J x
94 92 93 syl3an1 φ A x A J x
95 94 3expa φ A x A J x
96 nnre A A
97 96 ad2antlr φ A x A
98 95 97 ifcld φ A x if A J x A A J x A
99 ifcl if A J x A A J x A 0 if x A A if A J x A A J x A 0
100 98 51 99 sylancl φ A x if x A A if A J x A A J x A 0
101 eqid x if x A A if A J x A A J x A 0 = x if x A A if A J x A A J x A 0
102 101 fvmpt2 x if x A A if A J x A A J x A 0 x if x A A if A J x A A J x A 0 x = if x A A if A J x A A J x A 0
103 75 100 102 syl2anc φ A x x if x A A if A J x A A J x A 0 x = if x A A if A J x A A J x A 0
104 74 103 eqtrd φ A x G A x = if x A A if A J x A A J x A 0
105 57 62 64 66 69 71 104 ofrfval φ A 0 𝑝 f G A x 0 if x A A if A J x A A J x A 0
106 50 105 mpbird φ A 0 𝑝 f G A
107 1 2 3 mbfi1fseqlem1 φ J : × 0 +∞
108 107 ad2antrr φ A x J : × 0 +∞
109 peano2nn A A + 1
110 109 ad2antlr φ A x A + 1
111 108 110 75 fovrnd φ A x A + 1 J x 0 +∞
112 elrege0 A + 1 J x 0 +∞ A + 1 J x 0 A + 1 J x
113 111 112 sylib φ A x A + 1 J x 0 A + 1 J x
114 113 simpld φ A x A + 1 J x
115 min1 A J x A if A J x A A J x A A J x
116 95 97 115 syl2anc φ A x if A J x A A J x A A J x
117 2cn 2
118 11 ad2antlr φ A x A 0
119 expp1 2 A 0 2 A + 1 = 2 A 2
120 117 118 119 sylancr φ A x 2 A + 1 = 2 A 2
121 120 oveq2d φ A x F x 2 A 2 A 2 A + 1 = F x 2 A 2 A 2 A 2
122 37 95 eqeltrrd φ A x F x 2 A 2 A
123 122 recnd φ A x F x 2 A 2 A
124 15 recnd φ A x 2 A
125 2cnd φ A x 2
126 123 124 125 mulassd φ A x F x 2 A 2 A 2 A 2 = F x 2 A 2 A 2 A 2
127 23 recnd φ A x F x 2 A
128 14 nnne0d φ A x 2 A 0
129 127 124 128 divcan1d φ A x F x 2 A 2 A 2 A = F x 2 A
130 129 oveq1d φ A x F x 2 A 2 A 2 A 2 = F x 2 A 2
131 121 126 130 3eqtr2d φ A x F x 2 A 2 A 2 A + 1 = F x 2 A 2
132 flle F x 2 A F x 2 A F x 2 A
133 16 132 syl φ A x F x 2 A F x 2 A
134 2re 2
135 2pos 0 < 2
136 134 135 pm3.2i 2 0 < 2
137 136 a1i φ A x 2 0 < 2
138 lemul1 F x 2 A F x 2 A 2 0 < 2 F x 2 A F x 2 A F x 2 A 2 F x 2 A 2
139 23 16 137 138 syl3anc φ A x F x 2 A F x 2 A F x 2 A 2 F x 2 A 2
140 133 139 mpbid φ A x F x 2 A 2 F x 2 A 2
141 120 oveq2d φ A x F x 2 A + 1 = F x 2 A 2
142 9 recnd φ A x F x
143 142 124 125 mulassd φ A x F x 2 A 2 = F x 2 A 2
144 141 143 eqtr4d φ A x F x 2 A + 1 = F x 2 A 2
145 140 144 breqtrrd φ A x F x 2 A 2 F x 2 A + 1
146 110 nnnn0d φ A x A + 1 0
147 nnexpcl 2 A + 1 0 2 A + 1
148 10 146 147 sylancr φ A x 2 A + 1
149 148 nnred φ A x 2 A + 1
150 9 149 remulcld φ A x F x 2 A + 1
151 16 flcld φ A x F x 2 A
152 2z 2
153 zmulcl F x 2 A 2 F x 2 A 2
154 151 152 153 sylancl φ A x F x 2 A 2
155 flge F x 2 A + 1 F x 2 A 2 F x 2 A 2 F x 2 A + 1 F x 2 A 2 F x 2 A + 1
156 150 154 155 syl2anc φ A x F x 2 A 2 F x 2 A + 1 F x 2 A 2 F x 2 A + 1
157 145 156 mpbid φ A x F x 2 A 2 F x 2 A + 1
158 131 157 eqbrtrd φ A x F x 2 A 2 A 2 A + 1 F x 2 A + 1
159 reflcl F x 2 A + 1 F x 2 A + 1
160 150 159 syl φ A x F x 2 A + 1
161 148 nngt0d φ A x 0 < 2 A + 1
162 lemuldiv F x 2 A 2 A F x 2 A + 1 2 A + 1 0 < 2 A + 1 F x 2 A 2 A 2 A + 1 F x 2 A + 1 F x 2 A 2 A F x 2 A + 1 2 A + 1
163 122 160 149 161 162 syl112anc φ A x F x 2 A 2 A 2 A + 1 F x 2 A + 1 F x 2 A 2 A F x 2 A + 1 2 A + 1
164 158 163 mpbid φ A x F x 2 A 2 A F x 2 A + 1 2 A + 1
165 simpr m = A + 1 y = x y = x
166 165 fveq2d m = A + 1 y = x F y = F x
167 simpl m = A + 1 y = x m = A + 1
168 167 oveq2d m = A + 1 y = x 2 m = 2 A + 1
169 166 168 oveq12d m = A + 1 y = x F y 2 m = F x 2 A + 1
170 169 fveq2d m = A + 1 y = x F y 2 m = F x 2 A + 1
171 170 168 oveq12d m = A + 1 y = x F y 2 m 2 m = F x 2 A + 1 2 A + 1
172 ovex F x 2 A + 1 2 A + 1 V
173 171 3 172 ovmpoa A + 1 x A + 1 J x = F x 2 A + 1 2 A + 1
174 110 75 173 syl2anc φ A x A + 1 J x = F x 2 A + 1 2 A + 1
175 164 37 174 3brtr4d φ A x A J x A + 1 J x
176 98 95 114 116 175 letrd φ A x if A J x A A J x A A + 1 J x
177 110 nnred φ A x A + 1
178 min2 A J x A if A J x A A J x A A
179 95 97 178 syl2anc φ A x if A J x A A J x A A
180 97 lep1d φ A x A A + 1
181 98 97 177 179 180 letrd φ A x if A J x A A J x A A + 1
182 breq2 A + 1 J x = if A + 1 J x A + 1 A + 1 J x A + 1 if A J x A A J x A A + 1 J x if A J x A A J x A if A + 1 J x A + 1 A + 1 J x A + 1
183 breq2 A + 1 = if A + 1 J x A + 1 A + 1 J x A + 1 if A J x A A J x A A + 1 if A J x A A J x A if A + 1 J x A + 1 A + 1 J x A + 1
184 182 183 ifboth if A J x A A J x A A + 1 J x if A J x A A J x A A + 1 if A J x A A J x A if A + 1 J x A + 1 A + 1 J x A + 1
185 176 181 184 syl2anc φ A x if A J x A A J x A if A + 1 J x A + 1 A + 1 J x A + 1
186 185 adantr φ A x x A A if A J x A A J x A if A + 1 J x A + 1 A + 1 J x A + 1
187 iftrue x A A if x A A if A J x A A J x A 0 = if A J x A A J x A
188 187 adantl φ A x x A A if x A A if A J x A A J x A 0 = if A J x A A J x A
189 177 renegcld φ A x A + 1
190 97 177 lenegd φ A x A A + 1 A + 1 A
191 180 190 mpbid φ A x A + 1 A
192 iccss A + 1 A + 1 A + 1 A A A + 1 A A A + 1 A + 1
193 189 177 191 180 192 syl22anc φ A x A A A + 1 A + 1
194 193 sselda φ A x x A A x A + 1 A + 1
195 194 iftrued φ A x x A A if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 = if A + 1 J x A + 1 A + 1 J x A + 1
196 186 188 195 3brtr4d φ A x x A A if x A A if A J x A A J x A 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
197 iffalse ¬ x A A if x A A if A J x A A J x A 0 = 0
198 197 adantl φ A x ¬ x A A if x A A if A J x A A J x A 0 = 0
199 113 simprd φ A x 0 A + 1 J x
200 146 nn0ge0d φ A x 0 A + 1
201 breq2 A + 1 J x = if A + 1 J x A + 1 A + 1 J x A + 1 0 A + 1 J x 0 if A + 1 J x A + 1 A + 1 J x A + 1
202 breq2 A + 1 = if A + 1 J x A + 1 A + 1 J x A + 1 0 A + 1 0 if A + 1 J x A + 1 A + 1 J x A + 1
203 201 202 ifboth 0 A + 1 J x 0 A + 1 0 if A + 1 J x A + 1 A + 1 J x A + 1
204 199 200 203 syl2anc φ A x 0 if A + 1 J x A + 1 A + 1 J x A + 1
205 breq2 if A + 1 J x A + 1 A + 1 J x A + 1 = if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 0 if A + 1 J x A + 1 A + 1 J x A + 1 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
206 breq2 0 = if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 0 0 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
207 205 206 ifboth 0 if A + 1 J x A + 1 A + 1 J x A + 1 0 0 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
208 204 45 207 sylancl φ A x 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
209 208 adantr φ A x ¬ x A A 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
210 198 209 eqbrtrd φ A x ¬ x A A if x A A if A J x A A J x A 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
211 196 210 pm2.61dan φ A x if x A A if A J x A A J x A 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
212 211 ralrimiva φ A x if x A A if A J x A A J x A 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
213 ffvelrn G : dom 1 A + 1 G A + 1 dom 1
214 58 109 213 syl2an φ A G A + 1 dom 1
215 i1ff G A + 1 dom 1 G A + 1 :
216 ffn G A + 1 : G A + 1 Fn
217 214 215 216 3syl φ A G A + 1 Fn
218 inidm =
219 1 2 3 4 mbfi1fseqlem2 A + 1 G A + 1 = x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
220 219 fveq1d A + 1 G A + 1 x = x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 x
221 110 220 syl φ A x G A + 1 x = x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 x
222 114 177 ifcld φ A x if A + 1 J x A + 1 A + 1 J x A + 1
223 ifcl if A + 1 J x A + 1 A + 1 J x A + 1 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
224 222 51 223 sylancl φ A x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
225 eqid x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 = x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
226 225 fvmpt2 x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 x = if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
227 75 224 226 syl2anc φ A x x if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0 x = if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
228 221 227 eqtrd φ A x G A + 1 x = if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
229 62 217 66 66 218 104 228 ofrfval φ A G A f G A + 1 x if x A A if A J x A A J x A 0 if x A + 1 A + 1 if A + 1 J x A + 1 A + 1 J x A + 1 0
230 212 229 mpbird φ A G A f G A + 1
231 106 230 jca φ A 0 𝑝 f G A G A f G A + 1