Metamath Proof Explorer


Theorem mbfi1fseqlem6

Description: Lemma for mbfi1fseq . Verify that G converges pointwise to F , and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φ F MblFn
mbfi1fseq.2 φ F : 0 +∞
mbfi1fseq.3 J = m , y F y 2 m 2 m
mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
Assertion mbfi1fseqlem6 φ g g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x F x

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φ F MblFn
2 mbfi1fseq.2 φ F : 0 +∞
3 mbfi1fseq.3 J = m , y F y 2 m 2 m
4 mbfi1fseq.4 G = m x if x m m if m J x m m J x m 0
5 1 2 3 4 mbfi1fseqlem4 φ G : dom 1
6 1 2 3 4 mbfi1fseqlem5 φ n 0 𝑝 f G n G n f G n + 1
7 6 ralrimiva φ n 0 𝑝 f G n G n f G n + 1
8 simpr φ x x
9 8 recnd φ x x
10 9 abscld φ x x
11 2 ffvelrnda φ x F x 0 +∞
12 elrege0 F x 0 +∞ F x 0 F x
13 11 12 sylib φ x F x 0 F x
14 13 simpld φ x F x
15 10 14 readdcld φ x x + F x
16 arch x + F x k x + F x < k
17 15 16 syl φ x k x + F x < k
18 eqid k = k
19 nnz k k
20 19 ad2antrl φ x k x + F x < k k
21 nnuz = 1
22 1zzd φ x 1
23 halfcn 1 2
24 23 a1i φ x 1 2
25 halfre 1 2
26 halfge0 0 1 2
27 absid 1 2 0 1 2 1 2 = 1 2
28 25 26 27 mp2an 1 2 = 1 2
29 halflt1 1 2 < 1
30 28 29 eqbrtri 1 2 < 1
31 30 a1i φ x 1 2 < 1
32 24 31 expcnv φ x n 0 1 2 n 0
33 14 recnd φ x F x
34 nnex V
35 34 mptex n F x 1 2 n V
36 35 a1i φ x n F x 1 2 n V
37 nnnn0 j j 0
38 37 adantl φ x j j 0
39 oveq2 n = j 1 2 n = 1 2 j
40 eqid n 0 1 2 n = n 0 1 2 n
41 ovex 1 2 j V
42 39 40 41 fvmpt j 0 n 0 1 2 n j = 1 2 j
43 38 42 syl φ x j n 0 1 2 n j = 1 2 j
44 expcl 1 2 j 0 1 2 j
45 23 38 44 sylancr φ x j 1 2 j
46 43 45 eqeltrd φ x j n 0 1 2 n j
47 39 oveq2d n = j F x 1 2 n = F x 1 2 j
48 eqid n F x 1 2 n = n F x 1 2 n
49 ovex F x 1 2 j V
50 47 48 49 fvmpt j n F x 1 2 n j = F x 1 2 j
51 50 adantl φ x j n F x 1 2 n j = F x 1 2 j
52 43 oveq2d φ x j F x n 0 1 2 n j = F x 1 2 j
53 51 52 eqtr4d φ x j n F x 1 2 n j = F x n 0 1 2 n j
54 21 22 32 33 36 46 53 climsubc2 φ x n F x 1 2 n F x 0
55 33 subid1d φ x F x 0 = F x
56 54 55 breqtrd φ x n F x 1 2 n F x
57 56 adantr φ x k x + F x < k n F x 1 2 n F x
58 34 mptex n G n x V
59 58 a1i φ x k x + F x < k n G n x V
60 simprl φ x k x + F x < k k
61 eluznn k j k j
62 60 61 sylan φ x k x + F x < k j k j
63 62 50 syl φ x k x + F x < k j k n F x 1 2 n j = F x 1 2 j
64 14 ad2antrr φ x k x + F x < k j k F x
65 62 37 syl φ x k x + F x < k j k j 0
66 reexpcl 1 2 j 0 1 2 j
67 25 65 66 sylancr φ x k x + F x < k j k 1 2 j
68 64 67 resubcld φ x k x + F x < k j k F x 1 2 j
69 63 68 eqeltrd φ x k x + F x < k j k n F x 1 2 n j
70 fveq2 n = j G n = G j
71 70 fveq1d n = j G n x = G j x
72 eqid n G n x = n G n x
73 fvex G j x V
74 71 72 73 fvmpt j n G n x j = G j x
75 62 74 syl φ x k x + F x < k j k n G n x j = G j x
76 5 ad3antrrr φ x k x + F x < k j k G : dom 1
77 76 62 ffvelrnd φ x k x + F x < k j k G j dom 1
78 i1ff G j dom 1 G j :
79 77 78 syl φ x k x + F x < k j k G j :
80 8 ad2antrr φ x k x + F x < k j k x
81 79 80 ffvelrnd φ x k x + F x < k j k G j x
82 75 81 eqeltrd φ x k x + F x < k j k n G n x j
83 33 ad2antrr φ x k x + F x < k j k F x
84 2nn 2
85 nnexpcl 2 j 0 2 j
86 84 65 85 sylancr φ x k x + F x < k j k 2 j
87 86 nnred φ x k x + F x < k j k 2 j
88 87 recnd φ x k x + F x < k j k 2 j
89 86 nnne0d φ x k x + F x < k j k 2 j 0
90 83 88 89 divcan4d φ x k x + F x < k j k F x 2 j 2 j = F x
91 90 eqcomd φ x k x + F x < k j k F x = F x 2 j 2 j
92 2cnd φ x k x + F x < k j k 2
93 2ne0 2 0
94 93 a1i φ x k x + F x < k j k 2 0
95 eluzelz j k j
96 95 adantl φ x k x + F x < k j k j
97 92 94 96 exprecd φ x k x + F x < k j k 1 2 j = 1 2 j
98 91 97 oveq12d φ x k x + F x < k j k F x 1 2 j = F x 2 j 2 j 1 2 j
99 64 87 remulcld φ x k x + F x < k j k F x 2 j
100 99 recnd φ x k x + F x < k j k F x 2 j
101 1cnd φ x k x + F x < k j k 1
102 100 101 88 89 divsubdird φ x k x + F x < k j k F x 2 j 1 2 j = F x 2 j 2 j 1 2 j
103 98 102 eqtr4d φ x k x + F x < k j k F x 1 2 j = F x 2 j 1 2 j
104 fllep1 F x 2 j F x 2 j F x 2 j + 1
105 99 104 syl φ x k x + F x < k j k F x 2 j F x 2 j + 1
106 1red φ x k x + F x < k j k 1
107 reflcl F x 2 j F x 2 j
108 99 107 syl φ x k x + F x < k j k F x 2 j
109 99 106 108 lesubaddd φ x k x + F x < k j k F x 2 j 1 F x 2 j F x 2 j F x 2 j + 1
110 105 109 mpbird φ x k x + F x < k j k F x 2 j 1 F x 2 j
111 peano2rem F x 2 j F x 2 j 1
112 99 111 syl φ x k x + F x < k j k F x 2 j 1
113 86 nngt0d φ x k x + F x < k j k 0 < 2 j
114 lediv1 F x 2 j 1 F x 2 j 2 j 0 < 2 j F x 2 j 1 F x 2 j F x 2 j 1 2 j F x 2 j 2 j
115 112 108 87 113 114 syl112anc φ x k x + F x < k j k F x 2 j 1 F x 2 j F x 2 j 1 2 j F x 2 j 2 j
116 110 115 mpbid φ x k x + F x < k j k F x 2 j 1 2 j F x 2 j 2 j
117 103 116 eqbrtrd φ x k x + F x < k j k F x 1 2 j F x 2 j 2 j
118 1 2 3 4 mbfi1fseqlem2 j G j = x if x j j if j J x j j J x j 0
119 62 118 syl φ x k x + F x < k j k G j = x if x j j if j J x j j J x j 0
120 119 fveq1d φ x k x + F x < k j k G j x = x if x j j if j J x j j J x j 0 x
121 ovex j J x V
122 vex j V
123 121 122 ifex if j J x j j J x j V
124 c0ex 0 V
125 123 124 ifex if x j j if j J x j j J x j 0 V
126 eqid x if x j j if j J x j j J x j 0 = x if x j j if j J x j j J x j 0
127 126 fvmpt2 x if x j j if j J x j j J x j 0 V x if x j j if j J x j j J x j 0 x = if x j j if j J x j j J x j 0
128 80 125 127 sylancl φ x k x + F x < k j k x if x j j if j J x j j J x j 0 x = if x j j if j J x j j J x j 0
129 75 120 128 3eqtrd φ x k x + F x < k j k n G n x j = if x j j if j J x j j J x j 0
130 10 ad2antrr φ x k x + F x < k j k x
131 15 ad2antrr φ x k x + F x < k j k x + F x
132 62 nnred φ x k x + F x < k j k j
133 11 ad2antrr φ x k x + F x < k j k F x 0 +∞
134 133 12 sylib φ x k x + F x < k j k F x 0 F x
135 134 simprd φ x k x + F x < k j k 0 F x
136 130 64 addge01d φ x k x + F x < k j k 0 F x x x + F x
137 135 136 mpbid φ x k x + F x < k j k x x + F x
138 60 adantr φ x k x + F x < k j k k
139 138 nnred φ x k x + F x < k j k k
140 simplrr φ x k x + F x < k j k x + F x < k
141 131 139 140 ltled φ x k x + F x < k j k x + F x k
142 eluzle j k k j
143 142 adantl φ x k x + F x < k j k k j
144 131 139 132 141 143 letrd φ x k x + F x < k j k x + F x j
145 130 131 132 137 144 letrd φ x k x + F x < k j k x j
146 80 132 absled φ x k x + F x < k j k x j j x x j
147 145 146 mpbid φ x k x + F x < k j k j x x j
148 147 simpld φ x k x + F x < k j k j x
149 147 simprd φ x k x + F x < k j k x j
150 132 renegcld φ x k x + F x < k j k j
151 elicc2 j j x j j x j x x j
152 150 132 151 syl2anc φ x k x + F x < k j k x j j x j x x j
153 80 148 149 152 mpbir3and φ x k x + F x < k j k x j j
154 153 iftrued φ x k x + F x < k j k if x j j if j J x j j J x j 0 = if j J x j j J x j
155 simpr m = j y = x y = x
156 155 fveq2d m = j y = x F y = F x
157 simpl m = j y = x m = j
158 157 oveq2d m = j y = x 2 m = 2 j
159 156 158 oveq12d m = j y = x F y 2 m = F x 2 j
160 159 fveq2d m = j y = x F y 2 m = F x 2 j
161 160 158 oveq12d m = j y = x F y 2 m 2 m = F x 2 j 2 j
162 ovex F x 2 j 2 j V
163 161 3 162 ovmpoa j x j J x = F x 2 j 2 j
164 62 80 163 syl2anc φ x k x + F x < k j k j J x = F x 2 j 2 j
165 108 86 nndivred φ x k x + F x < k j k F x 2 j 2 j
166 flle F x 2 j F x 2 j F x 2 j
167 99 166 syl φ x k x + F x < k j k F x 2 j F x 2 j
168 ledivmul2 F x 2 j F x 2 j 0 < 2 j F x 2 j 2 j F x F x 2 j F x 2 j
169 108 64 87 113 168 syl112anc φ x k x + F x < k j k F x 2 j 2 j F x F x 2 j F x 2 j
170 167 169 mpbird φ x k x + F x < k j k F x 2 j 2 j F x
171 9 ad2antrr φ x k x + F x < k j k x
172 171 absge0d φ x k x + F x < k j k 0 x
173 64 130 addge02d φ x k x + F x < k j k 0 x F x x + F x
174 172 173 mpbid φ x k x + F x < k j k F x x + F x
175 64 131 132 174 144 letrd φ x k x + F x < k j k F x j
176 165 64 132 170 175 letrd φ x k x + F x < k j k F x 2 j 2 j j
177 164 176 eqbrtrd φ x k x + F x < k j k j J x j
178 177 iftrued φ x k x + F x < k j k if j J x j j J x j = j J x
179 178 164 eqtrd φ x k x + F x < k j k if j J x j j J x j = F x 2 j 2 j
180 129 154 179 3eqtrd φ x k x + F x < k j k n G n x j = F x 2 j 2 j
181 117 63 180 3brtr4d φ x k x + F x < k j k n F x 1 2 n j n G n x j
182 180 170 eqbrtrd φ x k x + F x < k j k n G n x j F x
183 18 20 57 59 69 82 181 182 climsqz φ x k x + F x < k n G n x F x
184 17 183 rexlimddv φ x n G n x F x
185 184 ralrimiva φ x n G n x F x
186 34 mptex m x if x m m if m J x m m J x m 0 V
187 4 186 eqeltri G V
188 feq1 g = G g : dom 1 G : dom 1
189 fveq1 g = G g n = G n
190 189 breq2d g = G 0 𝑝 f g n 0 𝑝 f G n
191 fveq1 g = G g n + 1 = G n + 1
192 189 191 breq12d g = G g n f g n + 1 G n f G n + 1
193 190 192 anbi12d g = G 0 𝑝 f g n g n f g n + 1 0 𝑝 f G n G n f G n + 1
194 193 ralbidv g = G n 0 𝑝 f g n g n f g n + 1 n 0 𝑝 f G n G n f G n + 1
195 189 fveq1d g = G g n x = G n x
196 195 mpteq2dv g = G n g n x = n G n x
197 196 breq1d g = G n g n x F x n G n x F x
198 197 ralbidv g = G x n g n x F x x n G n x F x
199 188 194 198 3anbi123d g = G g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x F x G : dom 1 n 0 𝑝 f G n G n f G n + 1 x n G n x F x
200 187 199 spcev G : dom 1 n 0 𝑝 f G n G n f G n + 1 x n G n x F x g g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x F x
201 5 7 185 200 syl3anc φ g g : dom 1 n 0 𝑝 f g n g n f g n + 1 x n g n x F x