| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssre |
|
| 2 |
1
|
adantl |
|
| 3 |
|
dfss4 |
|
| 4 |
2 3
|
sylib |
|
| 5 |
|
difreicc |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
difeq2d |
|
| 8 |
4 7
|
eqtr3d |
|
| 9 |
8
|
imaeq2d |
|
| 10 |
|
ffun |
|
| 11 |
|
funcnvcnv |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
ad2antlr |
|
| 14 |
|
imadif |
|
| 15 |
13 14
|
syl |
|
| 16 |
9 15
|
eqtrd |
|
| 17 |
|
fimacnv |
|
| 18 |
17
|
adantl |
|
| 19 |
|
mbfdm |
|
| 20 |
|
fdm |
|
| 21 |
20
|
eleq1d |
|
| 22 |
21
|
biimpac |
|
| 23 |
19 22
|
sylan |
|
| 24 |
18 23
|
eqeltrd |
|
| 25 |
|
imaundi |
|
| 26 |
|
mbfima |
|
| 27 |
|
mbfima |
|
| 28 |
|
unmbl |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
25 29
|
eqeltrid |
|
| 31 |
|
difmbl |
|
| 32 |
24 30 31
|
syl2anc |
|
| 33 |
32
|
adantr |
|
| 34 |
16 33
|
eqeltrd |
|