Metamath Proof Explorer


Theorem mbfimaopn2

Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses mbfimaopn.1 J = TopOpen fld
mbfimaopn2.2 K = J 𝑡 B
Assertion mbfimaopn2 F MblFn F : A B B C K F -1 C dom vol

Proof

Step Hyp Ref Expression
1 mbfimaopn.1 J = TopOpen fld
2 mbfimaopn2.2 K = J 𝑡 B
3 2 eleq2i C K C J 𝑡 B
4 1 cnfldtop J Top
5 simp3 F MblFn F : A B B B
6 cnex V
7 ssexg B V B V
8 5 6 7 sylancl F MblFn F : A B B B V
9 elrest J Top B V C J 𝑡 B u J C = u B
10 4 8 9 sylancr F MblFn F : A B B C J 𝑡 B u J C = u B
11 3 10 syl5bb F MblFn F : A B B C K u J C = u B
12 simpl2 F MblFn F : A B B u J F : A B
13 ffun F : A B Fun F
14 inpreima Fun F F -1 u B = F -1 u F -1 B
15 12 13 14 3syl F MblFn F : A B B u J F -1 u B = F -1 u F -1 B
16 1 mbfimaopn F MblFn u J F -1 u dom vol
17 16 3ad2antl1 F MblFn F : A B B u J F -1 u dom vol
18 fimacnv F : A B F -1 B = A
19 fdm F : A B dom F = A
20 18 19 eqtr4d F : A B F -1 B = dom F
21 12 20 syl F MblFn F : A B B u J F -1 B = dom F
22 simpl1 F MblFn F : A B B u J F MblFn
23 mbfdm F MblFn dom F dom vol
24 22 23 syl F MblFn F : A B B u J dom F dom vol
25 21 24 eqeltrd F MblFn F : A B B u J F -1 B dom vol
26 inmbl F -1 u dom vol F -1 B dom vol F -1 u F -1 B dom vol
27 17 25 26 syl2anc F MblFn F : A B B u J F -1 u F -1 B dom vol
28 15 27 eqeltrd F MblFn F : A B B u J F -1 u B dom vol
29 imaeq2 C = u B F -1 C = F -1 u B
30 29 eleq1d C = u B F -1 C dom vol F -1 u B dom vol
31 28 30 syl5ibrcom F MblFn F : A B B u J C = u B F -1 C dom vol
32 31 rexlimdva F MblFn F : A B B u J C = u B F -1 C dom vol
33 11 32 sylbid F MblFn F : A B B C K F -1 C dom vol
34 33 imp F MblFn F : A B B C K F -1 C dom vol