Metamath Proof Explorer


Theorem mbfimaopnlem

Description: Lemma for mbfimaopn . (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses mbfimaopn.1 J = TopOpen fld
mbfimaopn.2 G = x , y x + i y
mbfimaopn.3 B = . ×
mbfimaopn.4 K = ran x B , y B x × y
Assertion mbfimaopnlem F MblFn A J F -1 A dom vol

Proof

Step Hyp Ref Expression
1 mbfimaopn.1 J = TopOpen fld
2 mbfimaopn.2 G = x , y x + i y
3 mbfimaopn.3 B = . ×
4 mbfimaopn.4 K = ran x B , y B x × y
5 eqid topGen ran . = topGen ran .
6 2 5 1 cnrehmeo G topGen ran . × t topGen ran . Homeo J
7 hmeocn G topGen ran . × t topGen ran . Homeo J G topGen ran . × t topGen ran . Cn J
8 6 7 ax-mp G topGen ran . × t topGen ran . Cn J
9 cnima G topGen ran . × t topGen ran . Cn J A J G -1 A topGen ran . × t topGen ran .
10 8 9 mpan A J G -1 A topGen ran . × t topGen ran .
11 3 fveq2i topGen B = topGen . ×
12 11 tgqioo topGen ran . = topGen B
13 12 12 oveq12i topGen ran . × t topGen ran . = topGen B × t topGen B
14 qtopbas . × TopBases
15 3 14 eqeltri B TopBases
16 txbasval B TopBases B TopBases topGen B × t topGen B = B × t B
17 15 15 16 mp2an topGen B × t topGen B = B × t B
18 4 txval B TopBases B TopBases B × t B = topGen K
19 15 15 18 mp2an B × t B = topGen K
20 13 17 19 3eqtri topGen ran . × t topGen ran . = topGen K
21 10 20 eleqtrdi A J G -1 A topGen K
22 4 txbas B TopBases B TopBases K TopBases
23 15 15 22 mp2an K TopBases
24 eltg3 K TopBases G -1 A topGen K t t K G -1 A = t
25 23 24 ax-mp G -1 A topGen K t t K G -1 A = t
26 21 25 sylib A J t t K G -1 A = t
27 26 adantl F MblFn A J t t K G -1 A = t
28 2 cnref1o G : 2 1-1 onto
29 f1ofo G : 2 1-1 onto G : 2 onto
30 28 29 ax-mp G : 2 onto
31 elssuni A J A J
32 1 cnfldtopon J TopOn
33 32 toponunii = J
34 31 33 sseqtrrdi A J A
35 34 ad2antlr F MblFn A J t K G -1 A = t A
36 foimacnv G : 2 onto A G G -1 A = A
37 30 35 36 sylancr F MblFn A J t K G -1 A = t G G -1 A = A
38 simprr F MblFn A J t K G -1 A = t G -1 A = t
39 38 imaeq2d F MblFn A J t K G -1 A = t G G -1 A = G t
40 imauni G t = w t G w
41 39 40 eqtrdi F MblFn A J t K G -1 A = t G G -1 A = w t G w
42 37 41 eqtr3d F MblFn A J t K G -1 A = t A = w t G w
43 42 imaeq2d F MblFn A J t K G -1 A = t F -1 A = F -1 w t G w
44 imaiun F -1 w t G w = w t F -1 G w
45 43 44 eqtrdi F MblFn A J t K G -1 A = t F -1 A = w t F -1 G w
46 ssdomg K TopBases t K t K
47 23 46 ax-mp t K t K
48 omelon ω On
49 nnenom ω
50 49 ensymi ω
51 isnumi ω On ω dom card
52 48 50 51 mp2an dom card
53 qnnen
54 xpen × ×
55 53 53 54 mp2an × ×
56 xpnnen ×
57 55 56 entri ×
58 57 49 entr2i ω ×
59 isnumi ω On ω × × dom card
60 48 58 59 mp2an × dom card
61 ioof . : * × * 𝒫
62 ffun . : * × * 𝒫 Fun .
63 61 62 ax-mp Fun .
64 qssre
65 ressxr *
66 64 65 sstri *
67 xpss12 * * × * × *
68 66 66 67 mp2an × * × *
69 61 fdmi dom . = * × *
70 68 69 sseqtrri × dom .
71 fores Fun . × dom . . × : × onto . ×
72 63 70 71 mp2an . × : × onto . ×
73 fodomnum × dom card . × : × onto . × . × ×
74 60 72 73 mp2 . × ×
75 3 74 eqbrtri B ×
76 domentr B × × B
77 75 57 76 mp2an B
78 15 elexi B V
79 78 xpdom1 B B × B × B
80 77 79 ax-mp B × B × B
81 nnex V
82 81 xpdom2 B × B ×
83 77 82 ax-mp × B ×
84 domtr B × B × B × B × B × B ×
85 80 83 84 mp2an B × B ×
86 domentr B × B × × B × B
87 85 56 86 mp2an B × B
88 numdom dom card B × B B × B dom card
89 52 87 88 mp2an B × B dom card
90 eqid x B , y B x × y = x B , y B x × y
91 vex x V
92 vex y V
93 91 92 xpex x × y V
94 90 93 fnmpoi x B , y B x × y Fn B × B
95 dffn4 x B , y B x × y Fn B × B x B , y B x × y : B × B onto ran x B , y B x × y
96 94 95 mpbi x B , y B x × y : B × B onto ran x B , y B x × y
97 fodomnum B × B dom card x B , y B x × y : B × B onto ran x B , y B x × y ran x B , y B x × y B × B
98 89 96 97 mp2 ran x B , y B x × y B × B
99 domtr ran x B , y B x × y B × B B × B ran x B , y B x × y
100 98 87 99 mp2an ran x B , y B x × y
101 4 100 eqbrtri K
102 domtr t K K t
103 47 101 102 sylancl t K t
104 103 ad2antrl F MblFn A J t K G -1 A = t t
105 4 eleq2i w K w ran x B , y B x × y
106 90 93 elrnmpo w ran x B , y B x × y x B y B w = x × y
107 105 106 bitri w K x B y B w = x × y
108 elin z F -1 x F -1 y z F -1 x z F -1 y
109 mbff F MblFn F : dom F
110 109 adantr F MblFn x B y B F : dom F
111 fvco3 F : dom F z dom F F z = F z
112 110 111 sylan F MblFn x B y B z dom F F z = F z
113 112 eleq1d F MblFn x B y B z dom F F z x F z x
114 fvco3 F : dom F z dom F F z = F z
115 110 114 sylan F MblFn x B y B z dom F F z = F z
116 115 eleq1d F MblFn x B y B z dom F F z y F z y
117 113 116 anbi12d F MblFn x B y B z dom F F z x F z y F z x F z y
118 110 ffvelrnda F MblFn x B y B z dom F F z
119 fveq2 w = F z w = F z
120 fveq2 w = F z w = F z
121 119 120 opeq12d w = F z w w = F z F z
122 2 cnrecnv G -1 = w w w
123 opex F z F z V
124 121 122 123 fvmpt F z G -1 F z = F z F z
125 118 124 syl F MblFn x B y B z dom F G -1 F z = F z F z
126 125 eleq1d F MblFn x B y B z dom F G -1 F z x × y F z F z x × y
127 118 biantrurd F MblFn x B y B z dom F G -1 F z x × y F z G -1 F z x × y
128 126 127 bitr3d F MblFn x B y B z dom F F z F z x × y F z G -1 F z x × y
129 opelxp F z F z x × y F z x F z y
130 f1ocnv G : 2 1-1 onto G -1 : 1-1 onto 2
131 f1ofn G -1 : 1-1 onto 2 G -1 Fn
132 28 130 131 mp2b G -1 Fn
133 elpreima G -1 Fn F z G -1 -1 x × y F z G -1 F z x × y
134 132 133 ax-mp F z G -1 -1 x × y F z G -1 F z x × y
135 imacnvcnv G -1 -1 x × y = G x × y
136 135 eleq2i F z G -1 -1 x × y F z G x × y
137 134 136 bitr3i F z G -1 F z x × y F z G x × y
138 128 129 137 3bitr3g F MblFn x B y B z dom F F z x F z y F z G x × y
139 117 138 bitrd F MblFn x B y B z dom F F z x F z y F z G x × y
140 139 pm5.32da F MblFn x B y B z dom F F z x F z y z dom F F z G x × y
141 ref :
142 fco : F : dom F F : dom F
143 141 109 142 sylancr F MblFn F : dom F
144 ffn F : dom F F Fn dom F
145 elpreima F Fn dom F z F -1 x z dom F F z x
146 143 144 145 3syl F MblFn z F -1 x z dom F F z x
147 imf :
148 fco : F : dom F F : dom F
149 147 109 148 sylancr F MblFn F : dom F
150 ffn F : dom F F Fn dom F
151 elpreima F Fn dom F z F -1 y z dom F F z y
152 149 150 151 3syl F MblFn z F -1 y z dom F F z y
153 146 152 anbi12d F MblFn z F -1 x z F -1 y z dom F F z x z dom F F z y
154 anandi z dom F F z x F z y z dom F F z x z dom F F z y
155 153 154 bitr4di F MblFn z F -1 x z F -1 y z dom F F z x F z y
156 155 adantr F MblFn x B y B z F -1 x z F -1 y z dom F F z x F z y
157 ffn F : dom F F Fn dom F
158 elpreima F Fn dom F z F -1 G x × y z dom F F z G x × y
159 109 157 158 3syl F MblFn z F -1 G x × y z dom F F z G x × y
160 159 adantr F MblFn x B y B z F -1 G x × y z dom F F z G x × y
161 140 156 160 3bitr4d F MblFn x B y B z F -1 x z F -1 y z F -1 G x × y
162 108 161 syl5bb F MblFn x B y B z F -1 x F -1 y z F -1 G x × y
163 162 eqrdv F MblFn x B y B F -1 x F -1 y = F -1 G x × y
164 ismbfcn F : dom F F MblFn F MblFn F MblFn
165 109 164 syl F MblFn F MblFn F MblFn F MblFn
166 165 ibi F MblFn F MblFn F MblFn
167 166 simpld F MblFn F MblFn
168 ismbf F : dom F F MblFn x ran . F -1 x dom vol
169 143 168 syl F MblFn F MblFn x ran . F -1 x dom vol
170 167 169 mpbid F MblFn x ran . F -1 x dom vol
171 170 adantr F MblFn x B y B x ran . F -1 x dom vol
172 imassrn . × ran .
173 3 172 eqsstri B ran .
174 simprl F MblFn x B y B x B
175 173 174 sselid F MblFn x B y B x ran .
176 rsp x ran . F -1 x dom vol x ran . F -1 x dom vol
177 171 175 176 sylc F MblFn x B y B F -1 x dom vol
178 166 simprd F MblFn F MblFn
179 ismbf F : dom F F MblFn y ran . F -1 y dom vol
180 149 179 syl F MblFn F MblFn y ran . F -1 y dom vol
181 178 180 mpbid F MblFn y ran . F -1 y dom vol
182 181 adantr F MblFn x B y B y ran . F -1 y dom vol
183 simprr F MblFn x B y B y B
184 173 183 sselid F MblFn x B y B y ran .
185 rsp y ran . F -1 y dom vol y ran . F -1 y dom vol
186 182 184 185 sylc F MblFn x B y B F -1 y dom vol
187 inmbl F -1 x dom vol F -1 y dom vol F -1 x F -1 y dom vol
188 177 186 187 syl2anc F MblFn x B y B F -1 x F -1 y dom vol
189 163 188 eqeltrrd F MblFn x B y B F -1 G x × y dom vol
190 imaeq2 w = x × y G w = G x × y
191 190 imaeq2d w = x × y F -1 G w = F -1 G x × y
192 191 eleq1d w = x × y F -1 G w dom vol F -1 G x × y dom vol
193 189 192 syl5ibrcom F MblFn x B y B w = x × y F -1 G w dom vol
194 193 rexlimdvva F MblFn x B y B w = x × y F -1 G w dom vol
195 107 194 syl5bi F MblFn w K F -1 G w dom vol
196 195 ralrimiv F MblFn w K F -1 G w dom vol
197 ssralv t K w K F -1 G w dom vol w t F -1 G w dom vol
198 196 197 mpan9 F MblFn t K w t F -1 G w dom vol
199 198 ad2ant2r F MblFn A J t K G -1 A = t w t F -1 G w dom vol
200 iunmbl2 t w t F -1 G w dom vol w t F -1 G w dom vol
201 104 199 200 syl2anc F MblFn A J t K G -1 A = t w t F -1 G w dom vol
202 45 201 eqeltrd F MblFn A J t K G -1 A = t F -1 A dom vol
203 27 202 exlimddv F MblFn A J F -1 A dom vol