| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfimaopn.1 |  | 
						
							| 2 |  | mbfimaopn.2 |  | 
						
							| 3 |  | mbfimaopn.3 |  | 
						
							| 4 |  | mbfimaopn.4 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 2 5 1 | cnrehmeo |  | 
						
							| 7 |  | hmeocn |  | 
						
							| 8 | 6 7 | ax-mp |  | 
						
							| 9 |  | cnima |  | 
						
							| 10 | 8 9 | mpan |  | 
						
							| 11 | 3 | fveq2i |  | 
						
							| 12 | 11 | tgqioo |  | 
						
							| 13 | 12 12 | oveq12i |  | 
						
							| 14 |  | qtopbas |  | 
						
							| 15 | 3 14 | eqeltri |  | 
						
							| 16 |  | txbasval |  | 
						
							| 17 | 15 15 16 | mp2an |  | 
						
							| 18 | 4 | txval |  | 
						
							| 19 | 15 15 18 | mp2an |  | 
						
							| 20 | 13 17 19 | 3eqtri |  | 
						
							| 21 | 10 20 | eleqtrdi |  | 
						
							| 22 | 4 | txbas |  | 
						
							| 23 | 15 15 22 | mp2an |  | 
						
							| 24 |  | eltg3 |  | 
						
							| 25 | 23 24 | ax-mp |  | 
						
							| 26 | 21 25 | sylib |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 2 | cnref1o |  | 
						
							| 29 |  | f1ofo |  | 
						
							| 30 | 28 29 | ax-mp |  | 
						
							| 31 |  | elssuni |  | 
						
							| 32 | 1 | cnfldtopon |  | 
						
							| 33 | 32 | toponunii |  | 
						
							| 34 | 31 33 | sseqtrrdi |  | 
						
							| 35 | 34 | ad2antlr |  | 
						
							| 36 |  | foimacnv |  | 
						
							| 37 | 30 35 36 | sylancr |  | 
						
							| 38 |  | simprr |  | 
						
							| 39 | 38 | imaeq2d |  | 
						
							| 40 |  | imauni |  | 
						
							| 41 | 39 40 | eqtrdi |  | 
						
							| 42 | 37 41 | eqtr3d |  | 
						
							| 43 | 42 | imaeq2d |  | 
						
							| 44 |  | imaiun |  | 
						
							| 45 | 43 44 | eqtrdi |  | 
						
							| 46 |  | ssdomg |  | 
						
							| 47 | 23 46 | ax-mp |  | 
						
							| 48 |  | omelon |  | 
						
							| 49 |  | nnenom |  | 
						
							| 50 | 49 | ensymi |  | 
						
							| 51 |  | isnumi |  | 
						
							| 52 | 48 50 51 | mp2an |  | 
						
							| 53 |  | qnnen |  | 
						
							| 54 |  | xpen |  | 
						
							| 55 | 53 53 54 | mp2an |  | 
						
							| 56 |  | xpnnen |  | 
						
							| 57 | 55 56 | entri |  | 
						
							| 58 | 57 49 | entr2i |  | 
						
							| 59 |  | isnumi |  | 
						
							| 60 | 48 58 59 | mp2an |  | 
						
							| 61 |  | ioof |  | 
						
							| 62 |  | ffun |  | 
						
							| 63 | 61 62 | ax-mp |  | 
						
							| 64 |  | qssre |  | 
						
							| 65 |  | ressxr |  | 
						
							| 66 | 64 65 | sstri |  | 
						
							| 67 |  | xpss12 |  | 
						
							| 68 | 66 66 67 | mp2an |  | 
						
							| 69 | 61 | fdmi |  | 
						
							| 70 | 68 69 | sseqtrri |  | 
						
							| 71 |  | fores |  | 
						
							| 72 | 63 70 71 | mp2an |  | 
						
							| 73 |  | fodomnum |  | 
						
							| 74 | 60 72 73 | mp2 |  | 
						
							| 75 | 3 74 | eqbrtri |  | 
						
							| 76 |  | domentr |  | 
						
							| 77 | 75 57 76 | mp2an |  | 
						
							| 78 | 15 | elexi |  | 
						
							| 79 | 78 | xpdom1 |  | 
						
							| 80 | 77 79 | ax-mp |  | 
						
							| 81 |  | nnex |  | 
						
							| 82 | 81 | xpdom2 |  | 
						
							| 83 | 77 82 | ax-mp |  | 
						
							| 84 |  | domtr |  | 
						
							| 85 | 80 83 84 | mp2an |  | 
						
							| 86 |  | domentr |  | 
						
							| 87 | 85 56 86 | mp2an |  | 
						
							| 88 |  | numdom |  | 
						
							| 89 | 52 87 88 | mp2an |  | 
						
							| 90 |  | eqid |  | 
						
							| 91 |  | vex |  | 
						
							| 92 |  | vex |  | 
						
							| 93 | 91 92 | xpex |  | 
						
							| 94 | 90 93 | fnmpoi |  | 
						
							| 95 |  | dffn4 |  | 
						
							| 96 | 94 95 | mpbi |  | 
						
							| 97 |  | fodomnum |  | 
						
							| 98 | 89 96 97 | mp2 |  | 
						
							| 99 |  | domtr |  | 
						
							| 100 | 98 87 99 | mp2an |  | 
						
							| 101 | 4 100 | eqbrtri |  | 
						
							| 102 |  | domtr |  | 
						
							| 103 | 47 101 102 | sylancl |  | 
						
							| 104 | 103 | ad2antrl |  | 
						
							| 105 | 4 | eleq2i |  | 
						
							| 106 | 90 93 | elrnmpo |  | 
						
							| 107 | 105 106 | bitri |  | 
						
							| 108 |  | elin |  | 
						
							| 109 |  | mbff |  | 
						
							| 110 | 109 | adantr |  | 
						
							| 111 |  | fvco3 |  | 
						
							| 112 | 110 111 | sylan |  | 
						
							| 113 | 112 | eleq1d |  | 
						
							| 114 |  | fvco3 |  | 
						
							| 115 | 110 114 | sylan |  | 
						
							| 116 | 115 | eleq1d |  | 
						
							| 117 | 113 116 | anbi12d |  | 
						
							| 118 | 110 | ffvelcdmda |  | 
						
							| 119 |  | fveq2 |  | 
						
							| 120 |  | fveq2 |  | 
						
							| 121 | 119 120 | opeq12d |  | 
						
							| 122 | 2 | cnrecnv |  | 
						
							| 123 |  | opex |  | 
						
							| 124 | 121 122 123 | fvmpt |  | 
						
							| 125 | 118 124 | syl |  | 
						
							| 126 | 125 | eleq1d |  | 
						
							| 127 | 118 | biantrurd |  | 
						
							| 128 | 126 127 | bitr3d |  | 
						
							| 129 |  | opelxp |  | 
						
							| 130 |  | f1ocnv |  | 
						
							| 131 |  | f1ofn |  | 
						
							| 132 | 28 130 131 | mp2b |  | 
						
							| 133 |  | elpreima |  | 
						
							| 134 | 132 133 | ax-mp |  | 
						
							| 135 |  | imacnvcnv |  | 
						
							| 136 | 135 | eleq2i |  | 
						
							| 137 | 134 136 | bitr3i |  | 
						
							| 138 | 128 129 137 | 3bitr3g |  | 
						
							| 139 | 117 138 | bitrd |  | 
						
							| 140 | 139 | pm5.32da |  | 
						
							| 141 |  | ref |  | 
						
							| 142 |  | fco |  | 
						
							| 143 | 141 109 142 | sylancr |  | 
						
							| 144 |  | ffn |  | 
						
							| 145 |  | elpreima |  | 
						
							| 146 | 143 144 145 | 3syl |  | 
						
							| 147 |  | imf |  | 
						
							| 148 |  | fco |  | 
						
							| 149 | 147 109 148 | sylancr |  | 
						
							| 150 |  | ffn |  | 
						
							| 151 |  | elpreima |  | 
						
							| 152 | 149 150 151 | 3syl |  | 
						
							| 153 | 146 152 | anbi12d |  | 
						
							| 154 |  | anandi |  | 
						
							| 155 | 153 154 | bitr4di |  | 
						
							| 156 | 155 | adantr |  | 
						
							| 157 |  | ffn |  | 
						
							| 158 |  | elpreima |  | 
						
							| 159 | 109 157 158 | 3syl |  | 
						
							| 160 | 159 | adantr |  | 
						
							| 161 | 140 156 160 | 3bitr4d |  | 
						
							| 162 | 108 161 | bitrid |  | 
						
							| 163 | 162 | eqrdv |  | 
						
							| 164 |  | ismbfcn |  | 
						
							| 165 | 109 164 | syl |  | 
						
							| 166 | 165 | ibi |  | 
						
							| 167 | 166 | simpld |  | 
						
							| 168 |  | ismbf |  | 
						
							| 169 | 143 168 | syl |  | 
						
							| 170 | 167 169 | mpbid |  | 
						
							| 171 | 170 | adantr |  | 
						
							| 172 |  | imassrn |  | 
						
							| 173 | 3 172 | eqsstri |  | 
						
							| 174 |  | simprl |  | 
						
							| 175 | 173 174 | sselid |  | 
						
							| 176 |  | rsp |  | 
						
							| 177 | 171 175 176 | sylc |  | 
						
							| 178 | 166 | simprd |  | 
						
							| 179 |  | ismbf |  | 
						
							| 180 | 149 179 | syl |  | 
						
							| 181 | 178 180 | mpbid |  | 
						
							| 182 | 181 | adantr |  | 
						
							| 183 |  | simprr |  | 
						
							| 184 | 173 183 | sselid |  | 
						
							| 185 |  | rsp |  | 
						
							| 186 | 182 184 185 | sylc |  | 
						
							| 187 |  | inmbl |  | 
						
							| 188 | 177 186 187 | syl2anc |  | 
						
							| 189 | 163 188 | eqeltrrd |  | 
						
							| 190 |  | imaeq2 |  | 
						
							| 191 | 190 | imaeq2d |  | 
						
							| 192 | 191 | eleq1d |  | 
						
							| 193 | 189 192 | syl5ibrcom |  | 
						
							| 194 | 193 | rexlimdvva |  | 
						
							| 195 | 107 194 | biimtrid |  | 
						
							| 196 | 195 | ralrimiv |  | 
						
							| 197 |  | ssralv |  | 
						
							| 198 | 196 197 | mpan9 |  | 
						
							| 199 | 198 | ad2ant2r |  | 
						
							| 200 |  | iunmbl2 |  | 
						
							| 201 | 104 199 200 | syl2anc |  | 
						
							| 202 | 45 201 | eqeltrd |  | 
						
							| 203 | 27 202 | exlimddv |  |