Metamath Proof Explorer


Theorem mbfimasn

Description: The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion mbfimasn F MblFn F : A B F -1 B dom vol

Proof

Step Hyp Ref Expression
1 simp3 F MblFn F : A B B
2 rexr B B *
3 iccid B * B B = B
4 1 2 3 3syl F MblFn F : A B B B = B
5 4 imaeq2d F MblFn F : A B F -1 B B = F -1 B
6 mbfimaicc F MblFn F : A B B F -1 B B dom vol
7 6 anabsan2 F MblFn F : A B F -1 B B dom vol
8 7 3impa F MblFn F : A B F -1 B B dom vol
9 5 8 eqeltrrd F MblFn F : A B F -1 B dom vol