Metamath Proof Explorer


Theorem mbfinf

Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypotheses mbfinf.1 Z = M
mbfinf.2 G = x A sup ran n Z B <
mbfinf.3 φ M
mbfinf.4 φ n Z x A B MblFn
mbfinf.5 φ n Z x A B
mbfinf.6 φ x A y n Z y B
Assertion mbfinf φ G MblFn

Proof

Step Hyp Ref Expression
1 mbfinf.1 Z = M
2 mbfinf.2 G = x A sup ran n Z B <
3 mbfinf.3 φ M
4 mbfinf.4 φ n Z x A B MblFn
5 mbfinf.5 φ n Z x A B
6 mbfinf.6 φ x A y n Z y B
7 5 anass1rs φ x A n Z B
8 7 fmpttd φ x A n Z B : Z
9 8 frnd φ x A ran n Z B
10 uzid M M M
11 3 10 syl φ M M
12 11 1 eleqtrrdi φ M Z
13 12 adantr φ x A M Z
14 eqid n Z B = n Z B
15 14 7 dmmptd φ x A dom n Z B = Z
16 13 15 eleqtrrd φ x A M dom n Z B
17 16 ne0d φ x A dom n Z B
18 dm0rn0 dom n Z B = ran n Z B =
19 18 necon3bii dom n Z B ran n Z B
20 17 19 sylib φ x A ran n Z B
21 8 ffnd φ x A n Z B Fn Z
22 breq2 z = n Z B m y z y n Z B m
23 22 ralrn n Z B Fn Z z ran n Z B y z m Z y n Z B m
24 21 23 syl φ x A z ran n Z B y z m Z y n Z B m
25 nfcv _ n y
26 nfcv _ n
27 nffvmpt1 _ n n Z B m
28 25 26 27 nfbr n y n Z B m
29 nfv m y n Z B n
30 fveq2 m = n n Z B m = n Z B n
31 30 breq2d m = n y n Z B m y n Z B n
32 28 29 31 cbvralw m Z y n Z B m n Z y n Z B n
33 simpr φ x A n Z n Z
34 14 fvmpt2 n Z B n Z B n = B
35 33 7 34 syl2anc φ x A n Z n Z B n = B
36 35 breq2d φ x A n Z y n Z B n y B
37 36 ralbidva φ x A n Z y n Z B n n Z y B
38 32 37 syl5bb φ x A m Z y n Z B m n Z y B
39 24 38 bitrd φ x A z ran n Z B y z n Z y B
40 39 rexbidv φ x A y z ran n Z B y z y n Z y B
41 6 40 mpbird φ x A y z ran n Z B y z
42 infrenegsup ran n Z B ran n Z B y z ran n Z B y z sup ran n Z B < = sup r | r ran n Z B <
43 9 20 41 42 syl3anc φ x A sup ran n Z B < = sup r | r ran n Z B <
44 rabid r r | r ran n Z B r r ran n Z B
45 7 recnd φ x A n Z B
46 45 adantlr φ x A r n Z B
47 simplr φ x A r n Z r
48 47 recnd φ x A r n Z r
49 negcon2 B r B = r r = B
50 46 48 49 syl2anc φ x A r n Z B = r r = B
51 eqcom r = B B = r
52 50 51 bitrdi φ x A r n Z B = r B = r
53 35 adantlr φ x A r n Z n Z B n = B
54 53 eqeq1d φ x A r n Z n Z B n = r B = r
55 negex B V
56 eqid n Z B = n Z B
57 56 fvmpt2 n Z B V n Z B n = B
58 55 57 mpan2 n Z n Z B n = B
59 58 adantl φ x A r n Z n Z B n = B
60 59 eqeq1d φ x A r n Z n Z B n = r B = r
61 52 54 60 3bitr4d φ x A r n Z n Z B n = r n Z B n = r
62 61 ralrimiva φ x A r n Z n Z B n = r n Z B n = r
63 27 nfeq1 n n Z B m = r
64 nffvmpt1 _ n n Z B m
65 64 nfeq1 n n Z B m = r
66 63 65 nfbi n n Z B m = r n Z B m = r
67 nfv m n Z B n = r n Z B n = r
68 fveqeq2 m = n n Z B m = r n Z B n = r
69 fveqeq2 m = n n Z B m = r n Z B n = r
70 68 69 bibi12d m = n n Z B m = r n Z B m = r n Z B n = r n Z B n = r
71 66 67 70 cbvralw m Z n Z B m = r n Z B m = r n Z n Z B n = r n Z B n = r
72 62 71 sylibr φ x A r m Z n Z B m = r n Z B m = r
73 72 r19.21bi φ x A r m Z n Z B m = r n Z B m = r
74 73 rexbidva φ x A r m Z n Z B m = r m Z n Z B m = r
75 21 adantr φ x A r n Z B Fn Z
76 fvelrnb n Z B Fn Z r ran n Z B m Z n Z B m = r
77 75 76 syl φ x A r r ran n Z B m Z n Z B m = r
78 7 renegcld φ x A n Z B
79 78 fmpttd φ x A n Z B : Z
80 79 adantr φ x A r n Z B : Z
81 80 ffnd φ x A r n Z B Fn Z
82 fvelrnb n Z B Fn Z r ran n Z B m Z n Z B m = r
83 81 82 syl φ x A r r ran n Z B m Z n Z B m = r
84 74 77 83 3bitr4d φ x A r r ran n Z B r ran n Z B
85 84 pm5.32da φ x A r r ran n Z B r r ran n Z B
86 79 frnd φ x A ran n Z B
87 86 sseld φ x A r ran n Z B r
88 87 pm4.71rd φ x A r ran n Z B r r ran n Z B
89 85 88 bitr4d φ x A r r ran n Z B r ran n Z B
90 44 89 syl5bb φ x A r r | r ran n Z B r ran n Z B
91 90 alrimiv φ x A r r r | r ran n Z B r ran n Z B
92 nfrab1 _ r r | r ran n Z B
93 nfcv _ r ran n Z B
94 92 93 cleqf r | r ran n Z B = ran n Z B r r r | r ran n Z B r ran n Z B
95 91 94 sylibr φ x A r | r ran n Z B = ran n Z B
96 95 supeq1d φ x A sup r | r ran n Z B < = sup ran n Z B <
97 96 negeqd φ x A sup r | r ran n Z B < = sup ran n Z B <
98 43 97 eqtrd φ x A sup ran n Z B < = sup ran n Z B <
99 98 mpteq2dva φ x A sup ran n Z B < = x A sup ran n Z B <
100 2 99 syl5eq φ G = x A sup ran n Z B <
101 ltso < Or
102 101 supex sup ran n Z B < V
103 102 a1i φ x A sup ran n Z B < V
104 eqid x A sup ran n Z B < = x A sup ran n Z B <
105 5 anassrs φ n Z x A B
106 105 4 mbfneg φ n Z x A B MblFn
107 5 renegcld φ n Z x A B
108 renegcl y y
109 108 ad2antrl φ x A y n Z y B y
110 simplr φ x A y n Z y
111 7 adantlr φ x A y n Z B
112 110 111 lenegd φ x A y n Z y B B y
113 112 ralbidva φ x A y n Z y B n Z B y
114 113 biimpd φ x A y n Z y B n Z B y
115 114 impr φ x A y n Z y B n Z B y
116 brralrspcev y n Z B y z n Z B z
117 109 115 116 syl2anc φ x A y n Z y B z n Z B z
118 6 117 rexlimddv φ x A z n Z B z
119 1 104 3 106 107 118 mbfsup φ x A sup ran n Z B < MblFn
120 103 119 mbfneg φ x A sup ran n Z B < MblFn
121 100 120 eqeltrd φ G MblFn