| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfinf.1 |
|
| 2 |
|
mbfinf.2 |
|
| 3 |
|
mbfinf.3 |
|
| 4 |
|
mbfinf.4 |
|
| 5 |
|
mbfinf.5 |
|
| 6 |
|
mbfinf.6 |
|
| 7 |
5
|
anass1rs |
|
| 8 |
7
|
fmpttd |
|
| 9 |
8
|
frnd |
|
| 10 |
|
uzid |
|
| 11 |
3 10
|
syl |
|
| 12 |
11 1
|
eleqtrrdi |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eqid |
|
| 15 |
14 7
|
dmmptd |
|
| 16 |
13 15
|
eleqtrrd |
|
| 17 |
16
|
ne0d |
|
| 18 |
|
dm0rn0 |
|
| 19 |
18
|
necon3bii |
|
| 20 |
17 19
|
sylib |
|
| 21 |
8
|
ffnd |
|
| 22 |
|
breq2 |
|
| 23 |
22
|
ralrn |
|
| 24 |
21 23
|
syl |
|
| 25 |
|
nfcv |
|
| 26 |
|
nfcv |
|
| 27 |
|
nffvmpt1 |
|
| 28 |
25 26 27
|
nfbr |
|
| 29 |
|
nfv |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
breq2d |
|
| 32 |
28 29 31
|
cbvralw |
|
| 33 |
|
simpr |
|
| 34 |
14
|
fvmpt2 |
|
| 35 |
33 7 34
|
syl2anc |
|
| 36 |
35
|
breq2d |
|
| 37 |
36
|
ralbidva |
|
| 38 |
32 37
|
bitrid |
|
| 39 |
24 38
|
bitrd |
|
| 40 |
39
|
rexbidv |
|
| 41 |
6 40
|
mpbird |
|
| 42 |
|
infrenegsup |
|
| 43 |
9 20 41 42
|
syl3anc |
|
| 44 |
|
rabid |
|
| 45 |
7
|
recnd |
|
| 46 |
45
|
adantlr |
|
| 47 |
|
simplr |
|
| 48 |
47
|
recnd |
|
| 49 |
|
negcon2 |
|
| 50 |
46 48 49
|
syl2anc |
|
| 51 |
|
eqcom |
|
| 52 |
50 51
|
bitrdi |
|
| 53 |
35
|
adantlr |
|
| 54 |
53
|
eqeq1d |
|
| 55 |
|
negex |
|
| 56 |
|
eqid |
|
| 57 |
56
|
fvmpt2 |
|
| 58 |
55 57
|
mpan2 |
|
| 59 |
58
|
adantl |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
52 54 60
|
3bitr4d |
|
| 62 |
61
|
ralrimiva |
|
| 63 |
27
|
nfeq1 |
|
| 64 |
|
nffvmpt1 |
|
| 65 |
64
|
nfeq1 |
|
| 66 |
63 65
|
nfbi |
|
| 67 |
|
nfv |
|
| 68 |
|
fveqeq2 |
|
| 69 |
|
fveqeq2 |
|
| 70 |
68 69
|
bibi12d |
|
| 71 |
66 67 70
|
cbvralw |
|
| 72 |
62 71
|
sylibr |
|
| 73 |
72
|
r19.21bi |
|
| 74 |
73
|
rexbidva |
|
| 75 |
21
|
adantr |
|
| 76 |
|
fvelrnb |
|
| 77 |
75 76
|
syl |
|
| 78 |
7
|
renegcld |
|
| 79 |
78
|
fmpttd |
|
| 80 |
79
|
adantr |
|
| 81 |
80
|
ffnd |
|
| 82 |
|
fvelrnb |
|
| 83 |
81 82
|
syl |
|
| 84 |
74 77 83
|
3bitr4d |
|
| 85 |
84
|
pm5.32da |
|
| 86 |
79
|
frnd |
|
| 87 |
86
|
sseld |
|
| 88 |
87
|
pm4.71rd |
|
| 89 |
85 88
|
bitr4d |
|
| 90 |
44 89
|
bitrid |
|
| 91 |
90
|
alrimiv |
|
| 92 |
|
nfrab1 |
|
| 93 |
|
nfcv |
|
| 94 |
92 93
|
cleqf |
|
| 95 |
91 94
|
sylibr |
|
| 96 |
95
|
supeq1d |
|
| 97 |
96
|
negeqd |
|
| 98 |
43 97
|
eqtrd |
|
| 99 |
98
|
mpteq2dva |
|
| 100 |
2 99
|
eqtrid |
|
| 101 |
|
ltso |
|
| 102 |
101
|
supex |
|
| 103 |
102
|
a1i |
|
| 104 |
|
eqid |
|
| 105 |
5
|
anassrs |
|
| 106 |
105 4
|
mbfneg |
|
| 107 |
5
|
renegcld |
|
| 108 |
|
renegcl |
|
| 109 |
108
|
ad2antrl |
|
| 110 |
|
simplr |
|
| 111 |
7
|
adantlr |
|
| 112 |
110 111
|
lenegd |
|
| 113 |
112
|
ralbidva |
|
| 114 |
113
|
biimpd |
|
| 115 |
114
|
impr |
|
| 116 |
|
brralrspcev |
|
| 117 |
109 115 116
|
syl2anc |
|
| 118 |
6 117
|
rexlimddv |
|
| 119 |
1 104 3 106 107 118
|
mbfsup |
|
| 120 |
103 119
|
mbfneg |
|
| 121 |
100 120
|
eqeltrd |
|