Metamath Proof Explorer


Theorem mbflim

Description: The pointwise limit of a sequence of measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbflim.1 Z = M
mbflim.2 φ M
mbflim.4 φ x A n Z B C
mbflim.5 φ n Z x A B MblFn
mbflim.6 φ n Z x A B V
Assertion mbflim φ x A C MblFn

Proof

Step Hyp Ref Expression
1 mbflim.1 Z = M
2 mbflim.2 φ M
3 mbflim.4 φ x A n Z B C
4 mbflim.5 φ n Z x A B MblFn
5 mbflim.6 φ n Z x A B V
6 1 fvexi Z V
7 6 mptex n Z B V
8 7 a1i φ x A n Z B V
9 2 adantr φ x A M
10 5 anassrs φ n Z x A B V
11 4 10 mbfmptcl φ n Z x A B
12 11 an32s φ x A n Z B
13 12 fmpttd φ x A n Z B : Z
14 13 ffvelrnda φ x A k Z n Z B k
15 simpr φ x A n Z n Z
16 12 recld φ x A n Z B
17 eqid n Z B = n Z B
18 17 fvmpt2 n Z B n Z B n = B
19 15 16 18 syl2anc φ x A n Z n Z B n = B
20 eqid n Z B = n Z B
21 20 fvmpt2 n Z B n Z B n = B
22 15 12 21 syl2anc φ x A n Z n Z B n = B
23 22 fveq2d φ x A n Z n Z B n = B
24 19 23 eqtr4d φ x A n Z n Z B n = n Z B n
25 24 ralrimiva φ x A n Z n Z B n = n Z B n
26 nffvmpt1 _ n n Z B k
27 nfcv _ n
28 nffvmpt1 _ n n Z B k
29 27 28 nffv _ n n Z B k
30 26 29 nfeq n n Z B k = n Z B k
31 nfv k n Z B n = n Z B n
32 fveq2 k = n n Z B k = n Z B n
33 2fveq3 k = n n Z B k = n Z B n
34 32 33 eqeq12d k = n n Z B k = n Z B k n Z B n = n Z B n
35 30 31 34 cbvralw k Z n Z B k = n Z B k n Z n Z B n = n Z B n
36 25 35 sylibr φ x A k Z n Z B k = n Z B k
37 36 r19.21bi φ x A k Z n Z B k = n Z B k
38 1 3 8 9 14 37 climre φ x A n Z B C
39 11 ismbfcn2 φ n Z x A B MblFn x A B MblFn x A B MblFn
40 4 39 mpbid φ n Z x A B MblFn x A B MblFn
41 40 simpld φ n Z x A B MblFn
42 11 anasss φ n Z x A B
43 42 recld φ n Z x A B
44 1 2 38 41 43 mbflimlem φ x A C MblFn
45 6 mptex n Z B V
46 45 a1i φ x A n Z B V
47 12 imcld φ x A n Z B
48 eqid n Z B = n Z B
49 48 fvmpt2 n Z B n Z B n = B
50 15 47 49 syl2anc φ x A n Z n Z B n = B
51 22 fveq2d φ x A n Z n Z B n = B
52 50 51 eqtr4d φ x A n Z n Z B n = n Z B n
53 52 ralrimiva φ x A n Z n Z B n = n Z B n
54 nffvmpt1 _ n n Z B k
55 nfcv _ n
56 55 28 nffv _ n n Z B k
57 54 56 nfeq n n Z B k = n Z B k
58 nfv k n Z B n = n Z B n
59 fveq2 k = n n Z B k = n Z B n
60 2fveq3 k = n n Z B k = n Z B n
61 59 60 eqeq12d k = n n Z B k = n Z B k n Z B n = n Z B n
62 57 58 61 cbvralw k Z n Z B k = n Z B k n Z n Z B n = n Z B n
63 53 62 sylibr φ x A k Z n Z B k = n Z B k
64 63 r19.21bi φ x A k Z n Z B k = n Z B k
65 1 3 46 9 14 64 climim φ x A n Z B C
66 40 simprd φ n Z x A B MblFn
67 42 imcld φ n Z x A B
68 1 2 65 66 67 mbflimlem φ x A C MblFn
69 climcl n Z B C C
70 3 69 syl φ x A C
71 70 ismbfcn2 φ x A C MblFn x A C MblFn x A C MblFn
72 44 68 71 mpbir2and φ x A C MblFn