Metamath Proof Explorer


Theorem mbflimlem

Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbflim.1 Z = M
mbflim.2 φ M
mbflim.4 φ x A n Z B C
mbflim.5 φ n Z x A B MblFn
mbflimlem.6 φ n Z x A B
Assertion mbflimlem φ x A C MblFn

Proof

Step Hyp Ref Expression
1 mbflim.1 Z = M
2 mbflim.2 φ M
3 mbflim.4 φ x A n Z B C
4 mbflim.5 φ n Z x A B MblFn
5 mbflimlem.6 φ n Z x A B
6 5 anass1rs φ x A n Z B
7 6 fmpttd φ x A n Z B : Z
8 2 adantr φ x A M
9 climrel Rel
10 9 releldmi n Z B C n Z B dom
11 3 10 syl φ x A n Z B dom
12 1 climcau M n Z B dom y + k Z j k n Z B j n Z B k < y
13 8 11 12 syl2anc φ x A y + k Z j k n Z B j n Z B k < y
14 1 7 13 caurcvg φ x A n Z B lim sup n Z B
15 climuni n Z B lim sup n Z B n Z B C lim sup n Z B = C
16 14 3 15 syl2anc φ x A lim sup n Z B = C
17 16 mpteq2dva φ x A lim sup n Z B = x A C
18 eqid x A lim sup n Z B = x A lim sup n Z B
19 eqid m sup n Z B m +∞ * * < = m sup n Z B m +∞ * * <
20 7 ffvelrnda φ x A k Z n Z B k
21 1 8 14 20 climrecl φ x A lim sup n Z B
22 1 18 19 2 21 4 5 mbflimsup φ x A lim sup n Z B MblFn
23 17 22 eqeltrrd φ x A C MblFn