Metamath Proof Explorer


Theorem mbfmptcl

Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses mbfmptcl.1 φ x A B MblFn
mbfmptcl.2 φ x A B V
Assertion mbfmptcl φ x A B

Proof

Step Hyp Ref Expression
1 mbfmptcl.1 φ x A B MblFn
2 mbfmptcl.2 φ x A B V
3 mbff x A B MblFn x A B : dom x A B
4 1 3 syl φ x A B : dom x A B
5 2 ralrimiva φ x A B V
6 dmmptg x A B V dom x A B = A
7 5 6 syl φ dom x A B = A
8 7 feq2d φ x A B : dom x A B x A B : A
9 4 8 mpbid φ x A B : A
10 9 fvmptelrn φ x A B