Metamath Proof Explorer


Theorem mbfmul

Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbfmul.1 φ F MblFn
mbfmul.2 φ G MblFn
Assertion mbfmul φ F × f G MblFn

Proof

Step Hyp Ref Expression
1 mbfmul.1 φ F MblFn
2 mbfmul.2 φ G MblFn
3 mbff F MblFn F : dom F
4 1 3 syl φ F : dom F
5 4 ffnd φ F Fn dom F
6 mbff G MblFn G : dom G
7 2 6 syl φ G : dom G
8 7 ffnd φ G Fn dom G
9 mbfdm F MblFn dom F dom vol
10 1 9 syl φ dom F dom vol
11 mbfdm G MblFn dom G dom vol
12 2 11 syl φ dom G dom vol
13 eqid dom F dom G = dom F dom G
14 eqidd φ x dom F F x = F x
15 eqidd φ x dom G G x = G x
16 5 8 10 12 13 14 15 offval φ F × f G = x dom F dom G F x G x
17 elinel1 x dom F dom G x dom F
18 ffvelrn F : dom F x dom F F x
19 4 17 18 syl2an φ x dom F dom G F x
20 elinel2 x dom F dom G x dom G
21 ffvelrn G : dom G x dom G G x
22 7 20 21 syl2an φ x dom F dom G G x
23 19 22 remuld φ x dom F dom G F x G x = F x G x F x G x
24 23 mpteq2dva φ x dom F dom G F x G x = x dom F dom G F x G x F x G x
25 inmbl dom F dom vol dom G dom vol dom F dom G dom vol
26 10 12 25 syl2anc φ dom F dom G dom vol
27 ovexd φ x dom F dom G F x G x V
28 ovexd φ x dom F dom G F x G x V
29 19 recld φ x dom F dom G F x
30 22 recld φ x dom F dom G G x
31 eqidd φ x dom F dom G F x = x dom F dom G F x
32 eqidd φ x dom F dom G G x = x dom F dom G G x
33 26 29 30 31 32 offval2 φ x dom F dom G F x × f x dom F dom G G x = x dom F dom G F x G x
34 19 imcld φ x dom F dom G F x
35 22 imcld φ x dom F dom G G x
36 eqidd φ x dom F dom G F x = x dom F dom G F x
37 eqidd φ x dom F dom G G x = x dom F dom G G x
38 26 34 35 36 37 offval2 φ x dom F dom G F x × f x dom F dom G G x = x dom F dom G F x G x
39 26 27 28 33 38 offval2 φ x dom F dom G F x × f x dom F dom G G x f x dom F dom G F x × f x dom F dom G G x = x dom F dom G F x G x F x G x
40 24 39 eqtr4d φ x dom F dom G F x G x = x dom F dom G F x × f x dom F dom G G x f x dom F dom G F x × f x dom F dom G G x
41 inss1 dom F dom G dom F
42 resmpt dom F dom G dom F x dom F F x dom F dom G = x dom F dom G F x
43 41 42 ax-mp x dom F F x dom F dom G = x dom F dom G F x
44 4 feqmptd φ F = x dom F F x
45 44 1 eqeltrrd φ x dom F F x MblFn
46 mbfres x dom F F x MblFn dom F dom G dom vol x dom F F x dom F dom G MblFn
47 45 26 46 syl2anc φ x dom F F x dom F dom G MblFn
48 43 47 eqeltrrid φ x dom F dom G F x MblFn
49 19 ismbfcn2 φ x dom F dom G F x MblFn x dom F dom G F x MblFn x dom F dom G F x MblFn
50 48 49 mpbid φ x dom F dom G F x MblFn x dom F dom G F x MblFn
51 50 simpld φ x dom F dom G F x MblFn
52 inss2 dom F dom G dom G
53 resmpt dom F dom G dom G x dom G G x dom F dom G = x dom F dom G G x
54 52 53 ax-mp x dom G G x dom F dom G = x dom F dom G G x
55 7 feqmptd φ G = x dom G G x
56 55 2 eqeltrrd φ x dom G G x MblFn
57 mbfres x dom G G x MblFn dom F dom G dom vol x dom G G x dom F dom G MblFn
58 56 26 57 syl2anc φ x dom G G x dom F dom G MblFn
59 54 58 eqeltrrid φ x dom F dom G G x MblFn
60 22 ismbfcn2 φ x dom F dom G G x MblFn x dom F dom G G x MblFn x dom F dom G G x MblFn
61 59 60 mpbid φ x dom F dom G G x MblFn x dom F dom G G x MblFn
62 61 simpld φ x dom F dom G G x MblFn
63 29 fmpttd φ x dom F dom G F x : dom F dom G
64 30 fmpttd φ x dom F dom G G x : dom F dom G
65 51 62 63 64 mbfmullem φ x dom F dom G F x × f x dom F dom G G x MblFn
66 50 simprd φ x dom F dom G F x MblFn
67 61 simprd φ x dom F dom G G x MblFn
68 34 fmpttd φ x dom F dom G F x : dom F dom G
69 35 fmpttd φ x dom F dom G G x : dom F dom G
70 66 67 68 69 mbfmullem φ x dom F dom G F x × f x dom F dom G G x MblFn
71 65 70 mbfsub φ x dom F dom G F x × f x dom F dom G G x f x dom F dom G F x × f x dom F dom G G x MblFn
72 40 71 eqeltrd φ x dom F dom G F x G x MblFn
73 19 22 immuld φ x dom F dom G F x G x = F x G x + F x G x
74 73 mpteq2dva φ x dom F dom G F x G x = x dom F dom G F x G x + F x G x
75 ovexd φ x dom F dom G F x G x V
76 ovexd φ x dom F dom G F x G x V
77 26 29 35 31 37 offval2 φ x dom F dom G F x × f x dom F dom G G x = x dom F dom G F x G x
78 26 34 30 36 32 offval2 φ x dom F dom G F x × f x dom F dom G G x = x dom F dom G F x G x
79 26 75 76 77 78 offval2 φ x dom F dom G F x × f x dom F dom G G x + f x dom F dom G F x × f x dom F dom G G x = x dom F dom G F x G x + F x G x
80 74 79 eqtr4d φ x dom F dom G F x G x = x dom F dom G F x × f x dom F dom G G x + f x dom F dom G F x × f x dom F dom G G x
81 51 67 63 69 mbfmullem φ x dom F dom G F x × f x dom F dom G G x MblFn
82 66 62 68 64 mbfmullem φ x dom F dom G F x × f x dom F dom G G x MblFn
83 81 82 mbfadd φ x dom F dom G F x × f x dom F dom G G x + f x dom F dom G F x × f x dom F dom G G x MblFn
84 80 83 eqeltrd φ x dom F dom G F x G x MblFn
85 19 22 mulcld φ x dom F dom G F x G x
86 85 ismbfcn2 φ x dom F dom G F x G x MblFn x dom F dom G F x G x MblFn x dom F dom G F x G x MblFn
87 72 84 86 mpbir2and φ x dom F dom G F x G x MblFn
88 16 87 eqeltrd φ F × f G MblFn