Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmul.1 |
|
2 |
|
mbfmul.2 |
|
3 |
|
mbff |
|
4 |
1 3
|
syl |
|
5 |
4
|
ffnd |
|
6 |
|
mbff |
|
7 |
2 6
|
syl |
|
8 |
7
|
ffnd |
|
9 |
|
mbfdm |
|
10 |
1 9
|
syl |
|
11 |
|
mbfdm |
|
12 |
2 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqidd |
|
15 |
|
eqidd |
|
16 |
5 8 10 12 13 14 15
|
offval |
|
17 |
|
elinel1 |
|
18 |
|
ffvelrn |
|
19 |
4 17 18
|
syl2an |
|
20 |
|
elinel2 |
|
21 |
|
ffvelrn |
|
22 |
7 20 21
|
syl2an |
|
23 |
19 22
|
remuld |
|
24 |
23
|
mpteq2dva |
|
25 |
|
inmbl |
|
26 |
10 12 25
|
syl2anc |
|
27 |
|
ovexd |
|
28 |
|
ovexd |
|
29 |
19
|
recld |
|
30 |
22
|
recld |
|
31 |
|
eqidd |
|
32 |
|
eqidd |
|
33 |
26 29 30 31 32
|
offval2 |
|
34 |
19
|
imcld |
|
35 |
22
|
imcld |
|
36 |
|
eqidd |
|
37 |
|
eqidd |
|
38 |
26 34 35 36 37
|
offval2 |
|
39 |
26 27 28 33 38
|
offval2 |
|
40 |
24 39
|
eqtr4d |
|
41 |
|
inss1 |
|
42 |
|
resmpt |
|
43 |
41 42
|
ax-mp |
|
44 |
4
|
feqmptd |
|
45 |
44 1
|
eqeltrrd |
|
46 |
|
mbfres |
|
47 |
45 26 46
|
syl2anc |
|
48 |
43 47
|
eqeltrrid |
|
49 |
19
|
ismbfcn2 |
|
50 |
48 49
|
mpbid |
|
51 |
50
|
simpld |
|
52 |
|
inss2 |
|
53 |
|
resmpt |
|
54 |
52 53
|
ax-mp |
|
55 |
7
|
feqmptd |
|
56 |
55 2
|
eqeltrrd |
|
57 |
|
mbfres |
|
58 |
56 26 57
|
syl2anc |
|
59 |
54 58
|
eqeltrrid |
|
60 |
22
|
ismbfcn2 |
|
61 |
59 60
|
mpbid |
|
62 |
61
|
simpld |
|
63 |
29
|
fmpttd |
|
64 |
30
|
fmpttd |
|
65 |
51 62 63 64
|
mbfmullem |
|
66 |
50
|
simprd |
|
67 |
61
|
simprd |
|
68 |
34
|
fmpttd |
|
69 |
35
|
fmpttd |
|
70 |
66 67 68 69
|
mbfmullem |
|
71 |
65 70
|
mbfsub |
|
72 |
40 71
|
eqeltrd |
|
73 |
19 22
|
immuld |
|
74 |
73
|
mpteq2dva |
|
75 |
|
ovexd |
|
76 |
|
ovexd |
|
77 |
26 29 35 31 37
|
offval2 |
|
78 |
26 34 30 36 32
|
offval2 |
|
79 |
26 75 76 77 78
|
offval2 |
|
80 |
74 79
|
eqtr4d |
|
81 |
51 67 63 69
|
mbfmullem |
|
82 |
66 62 68 64
|
mbfmullem |
|
83 |
81 82
|
mbfadd |
|
84 |
80 83
|
eqeltrd |
|
85 |
19 22
|
mulcld |
|
86 |
85
|
ismbfcn2 |
|
87 |
72 84 86
|
mpbir2and |
|
88 |
16 87
|
eqeltrd |
|