Metamath Proof Explorer


Theorem mbfmulc2

Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses mbfmulc2.1 φ C
mbfmulc2.2 φ x A B V
mbfmulc2.3 φ x A B MblFn
Assertion mbfmulc2 φ x A C B MblFn

Proof

Step Hyp Ref Expression
1 mbfmulc2.1 φ C
2 mbfmulc2.2 φ x A B V
3 mbfmulc2.3 φ x A B MblFn
4 3 2 mbfdm2 φ A dom vol
5 1 recld φ C
6 5 adantr φ x A C
7 6 recnd φ x A C
8 3 2 mbfmptcl φ x A B
9 8 recld φ x A B
10 9 recnd φ x A B
11 7 10 mulcld φ x A C B
12 ovexd φ x A C B V
13 fconstmpt A × C = x A C
14 13 a1i φ A × C = x A C
15 eqidd φ x A B = x A B
16 4 6 9 14 15 offval2 φ A × C × f x A B = x A C B
17 1 imcld φ C
18 17 renegcld φ C
19 18 adantr φ x A C
20 8 imcld φ x A B
21 fconstmpt A × C = x A C
22 21 a1i φ A × C = x A C
23 eqidd φ x A B = x A B
24 4 19 20 22 23 offval2 φ A × C × f x A B = x A C B
25 4 11 12 16 24 offval2 φ A × C × f x A B + f A × C × f x A B = x A C B + C B
26 17 adantr φ x A C
27 26 recnd φ x A C
28 20 recnd φ x A B
29 27 28 mulcld φ x A C B
30 11 29 negsubd φ x A C B + C B = C B C B
31 27 28 mulneg1d φ x A C B = C B
32 31 oveq2d φ x A C B + C B = C B + C B
33 1 adantr φ x A C
34 33 8 remuld φ x A C B = C B C B
35 30 32 34 3eqtr4d φ x A C B + C B = C B
36 35 mpteq2dva φ x A C B + C B = x A C B
37 25 36 eqtrd φ A × C × f x A B + f A × C × f x A B = x A C B
38 8 ismbfcn2 φ x A B MblFn x A B MblFn x A B MblFn
39 3 38 mpbid φ x A B MblFn x A B MblFn
40 39 simpld φ x A B MblFn
41 10 fmpttd φ x A B : A
42 40 5 41 mbfmulc2re φ A × C × f x A B MblFn
43 39 simprd φ x A B MblFn
44 28 fmpttd φ x A B : A
45 43 18 44 mbfmulc2re φ A × C × f x A B MblFn
46 42 45 mbfadd φ A × C × f x A B + f A × C × f x A B MblFn
47 37 46 eqeltrrd φ x A C B MblFn
48 ovexd φ x A C B V
49 ovexd φ x A C B V
50 4 6 20 14 23 offval2 φ A × C × f x A B = x A C B
51 fconstmpt A × C = x A C
52 51 a1i φ A × C = x A C
53 4 26 9 52 15 offval2 φ A × C × f x A B = x A C B
54 4 48 49 50 53 offval2 φ A × C × f x A B + f A × C × f x A B = x A C B + C B
55 33 8 immuld φ x A C B = C B + C B
56 55 mpteq2dva φ x A C B = x A C B + C B
57 54 56 eqtr4d φ A × C × f x A B + f A × C × f x A B = x A C B
58 43 5 44 mbfmulc2re φ A × C × f x A B MblFn
59 40 17 41 mbfmulc2re φ A × C × f x A B MblFn
60 58 59 mbfadd φ A × C × f x A B + f A × C × f x A B MblFn
61 57 60 eqeltrrd φ x A C B MblFn
62 33 8 mulcld φ x A C B
63 62 ismbfcn2 φ x A C B MblFn x A C B MblFn x A C B MblFn
64 47 61 63 mpbir2and φ x A C B MblFn