Metamath Proof Explorer


Theorem mbfmulc2re

Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses mbfmulc2re.1 φ F MblFn
mbfmulc2re.2 φ B
mbfmulc2re.3 φ F : A
Assertion mbfmulc2re φ A × B × f F MblFn

Proof

Step Hyp Ref Expression
1 mbfmulc2re.1 φ F MblFn
2 mbfmulc2re.2 φ B
3 mbfmulc2re.3 φ F : A
4 3 fdmd φ dom F = A
5 1 dmexd φ dom F V
6 4 5 eqeltrrd φ A V
7 2 adantr φ x A B
8 3 ffvelrnda φ x A F x
9 fconstmpt A × B = x A B
10 9 a1i φ A × B = x A B
11 3 feqmptd φ F = x A F x
12 6 7 8 10 11 offval2 φ A × B × f F = x A B F x
13 7 8 remul2d φ x A B F x = B F x
14 13 mpteq2dva φ x A B F x = x A B F x
15 8 recld φ x A F x
16 eqidd φ x A F x = x A F x
17 6 7 15 10 16 offval2 φ A × B × f x A F x = x A B F x
18 14 17 eqtr4d φ x A B F x = A × B × f x A F x
19 11 1 eqeltrrd φ x A F x MblFn
20 8 ismbfcn2 φ x A F x MblFn x A F x MblFn x A F x MblFn
21 19 20 mpbid φ x A F x MblFn x A F x MblFn
22 21 simpld φ x A F x MblFn
23 15 fmpttd φ x A F x : A
24 22 2 23 mbfmulc2lem φ A × B × f x A F x MblFn
25 18 24 eqeltrd φ x A B F x MblFn
26 7 8 immul2d φ x A B F x = B F x
27 26 mpteq2dva φ x A B F x = x A B F x
28 8 imcld φ x A F x
29 eqidd φ x A F x = x A F x
30 6 7 28 10 29 offval2 φ A × B × f x A F x = x A B F x
31 27 30 eqtr4d φ x A B F x = A × B × f x A F x
32 21 simprd φ x A F x MblFn
33 28 fmpttd φ x A F x : A
34 32 2 33 mbfmulc2lem φ A × B × f x A F x MblFn
35 31 34 eqeltrd φ x A B F x MblFn
36 2 recnd φ B
37 36 adantr φ x A B
38 37 8 mulcld φ x A B F x
39 38 ismbfcn2 φ x A B F x MblFn x A B F x MblFn x A B F x MblFn
40 25 35 39 mpbir2and φ x A B F x MblFn
41 12 40 eqeltrd φ A × B × f F MblFn