Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmulc2re.1 |
|
2 |
|
mbfmulc2re.2 |
|
3 |
|
mbfmulc2re.3 |
|
4 |
3
|
fdmd |
|
5 |
1
|
dmexd |
|
6 |
4 5
|
eqeltrrd |
|
7 |
2
|
adantr |
|
8 |
3
|
ffvelrnda |
|
9 |
|
fconstmpt |
|
10 |
9
|
a1i |
|
11 |
3
|
feqmptd |
|
12 |
6 7 8 10 11
|
offval2 |
|
13 |
7 8
|
remul2d |
|
14 |
13
|
mpteq2dva |
|
15 |
8
|
recld |
|
16 |
|
eqidd |
|
17 |
6 7 15 10 16
|
offval2 |
|
18 |
14 17
|
eqtr4d |
|
19 |
11 1
|
eqeltrrd |
|
20 |
8
|
ismbfcn2 |
|
21 |
19 20
|
mpbid |
|
22 |
21
|
simpld |
|
23 |
15
|
fmpttd |
|
24 |
22 2 23
|
mbfmulc2lem |
|
25 |
18 24
|
eqeltrd |
|
26 |
7 8
|
immul2d |
|
27 |
26
|
mpteq2dva |
|
28 |
8
|
imcld |
|
29 |
|
eqidd |
|
30 |
6 7 28 10 29
|
offval2 |
|
31 |
27 30
|
eqtr4d |
|
32 |
21
|
simprd |
|
33 |
28
|
fmpttd |
|
34 |
32 2 33
|
mbfmulc2lem |
|
35 |
31 34
|
eqeltrd |
|
36 |
2
|
recnd |
|
37 |
36
|
adantr |
|
38 |
37 8
|
mulcld |
|
39 |
38
|
ismbfcn2 |
|
40 |
25 35 39
|
mpbir2and |
|
41 |
12 40
|
eqeltrd |
|