Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmul.1 |
|
2 |
|
mbfmul.2 |
|
3 |
|
mbfmul.3 |
|
4 |
|
mbfmul.4 |
|
5 |
1 3
|
mbfi1flim |
|
6 |
2 4
|
mbfi1flim |
|
7 |
|
exdistrv |
|
8 |
1
|
adantr |
|
9 |
2
|
adantr |
|
10 |
3
|
adantr |
|
11 |
4
|
adantr |
|
12 |
|
simprll |
|
13 |
|
simprlr |
|
14 |
|
fveq2 |
|
15 |
14
|
mpteq2dv |
|
16 |
|
fveq2 |
|
17 |
16
|
fveq1d |
|
18 |
17
|
cbvmptv |
|
19 |
15 18
|
eqtrdi |
|
20 |
|
fveq2 |
|
21 |
19 20
|
breq12d |
|
22 |
21
|
rspccva |
|
23 |
13 22
|
sylan |
|
24 |
|
simprrl |
|
25 |
|
simprrr |
|
26 |
|
fveq2 |
|
27 |
26
|
mpteq2dv |
|
28 |
|
fveq2 |
|
29 |
28
|
fveq1d |
|
30 |
29
|
cbvmptv |
|
31 |
27 30
|
eqtrdi |
|
32 |
|
fveq2 |
|
33 |
31 32
|
breq12d |
|
34 |
33
|
rspccva |
|
35 |
25 34
|
sylan |
|
36 |
8 9 10 11 12 23 24 35
|
mbfmullem2 |
|
37 |
36
|
ex |
|
38 |
37
|
exlimdvv |
|
39 |
7 38
|
syl5bir |
|
40 |
5 6 39
|
mp2and |
|