Step |
Hyp |
Ref |
Expression |
1 |
|
mbfmul.1 |
|
2 |
|
mbfmul.2 |
|
3 |
|
mbfmul.3 |
|
4 |
|
mbfmul.4 |
|
5 |
|
mbfmul.5 |
|
6 |
|
mbfmul.6 |
|
7 |
|
mbfmul.7 |
|
8 |
|
mbfmul.8 |
|
9 |
3
|
ffnd |
|
10 |
4
|
ffnd |
|
11 |
3
|
fdmd |
|
12 |
|
mbfdm |
|
13 |
1 12
|
syl |
|
14 |
11 13
|
eqeltrrd |
|
15 |
|
inidm |
|
16 |
|
eqidd |
|
17 |
|
eqidd |
|
18 |
9 10 14 14 15 16 17
|
offval |
|
19 |
|
nnuz |
|
20 |
|
1zzd |
|
21 |
|
1zzd |
|
22 |
|
nnex |
|
23 |
22
|
mptex |
|
24 |
23
|
a1i |
|
25 |
5
|
ffvelrnda |
|
26 |
|
i1ff |
|
27 |
25 26
|
syl |
|
28 |
27
|
adantlr |
|
29 |
|
mblss |
|
30 |
14 29
|
syl |
|
31 |
30
|
sselda |
|
32 |
31
|
adantr |
|
33 |
28 32
|
ffvelrnd |
|
34 |
33
|
recnd |
|
35 |
34
|
fmpttd |
|
36 |
35
|
ffvelrnda |
|
37 |
7
|
ffvelrnda |
|
38 |
|
i1ff |
|
39 |
37 38
|
syl |
|
40 |
39
|
adantlr |
|
41 |
40 32
|
ffvelrnd |
|
42 |
41
|
recnd |
|
43 |
42
|
fmpttd |
|
44 |
43
|
ffvelrnda |
|
45 |
|
fveq2 |
|
46 |
45
|
fveq1d |
|
47 |
|
fveq2 |
|
48 |
47
|
fveq1d |
|
49 |
46 48
|
oveq12d |
|
50 |
|
eqid |
|
51 |
|
ovex |
|
52 |
49 50 51
|
fvmpt |
|
53 |
52
|
adantl |
|
54 |
|
eqid |
|
55 |
|
fvex |
|
56 |
46 54 55
|
fvmpt |
|
57 |
|
eqid |
|
58 |
|
fvex |
|
59 |
48 57 58
|
fvmpt |
|
60 |
56 59
|
oveq12d |
|
61 |
60
|
adantl |
|
62 |
53 61
|
eqtr4d |
|
63 |
19 21 6 24 8 36 44 62
|
climmul |
|
64 |
30
|
adantr |
|
65 |
64
|
resmptd |
|
66 |
27
|
ffnd |
|
67 |
39
|
ffnd |
|
68 |
|
reex |
|
69 |
68
|
a1i |
|
70 |
|
inidm |
|
71 |
|
eqidd |
|
72 |
|
eqidd |
|
73 |
66 67 69 69 70 71 72
|
offval |
|
74 |
25 37
|
i1fmul |
|
75 |
|
i1fmbf |
|
76 |
74 75
|
syl |
|
77 |
73 76
|
eqeltrrd |
|
78 |
14
|
adantr |
|
79 |
|
mbfres |
|
80 |
77 78 79
|
syl2anc |
|
81 |
65 80
|
eqeltrrd |
|
82 |
|
ovex |
|
83 |
82
|
a1i |
|
84 |
19 20 63 81 83
|
mbflim |
|
85 |
18 84
|
eqeltrd |
|