| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfmul.1 |  | 
						
							| 2 |  | mbfmul.2 |  | 
						
							| 3 |  | mbfmul.3 |  | 
						
							| 4 |  | mbfmul.4 |  | 
						
							| 5 |  | mbfmul.5 |  | 
						
							| 6 |  | mbfmul.6 |  | 
						
							| 7 |  | mbfmul.7 |  | 
						
							| 8 |  | mbfmul.8 |  | 
						
							| 9 | 3 | ffnd |  | 
						
							| 10 | 4 | ffnd |  | 
						
							| 11 | 3 | fdmd |  | 
						
							| 12 |  | mbfdm |  | 
						
							| 13 | 1 12 | syl |  | 
						
							| 14 | 11 13 | eqeltrrd |  | 
						
							| 15 |  | inidm |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 |  | eqidd |  | 
						
							| 18 | 9 10 14 14 15 16 17 | offval |  | 
						
							| 19 |  | nnuz |  | 
						
							| 20 |  | 1zzd |  | 
						
							| 21 |  | 1zzd |  | 
						
							| 22 |  | nnex |  | 
						
							| 23 | 22 | mptex |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 | 5 | ffvelcdmda |  | 
						
							| 26 |  | i1ff |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 | adantlr |  | 
						
							| 29 |  | mblss |  | 
						
							| 30 | 14 29 | syl |  | 
						
							| 31 | 30 | sselda |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 28 32 | ffvelcdmd |  | 
						
							| 34 | 33 | recnd |  | 
						
							| 35 | 34 | fmpttd |  | 
						
							| 36 | 35 | ffvelcdmda |  | 
						
							| 37 | 7 | ffvelcdmda |  | 
						
							| 38 |  | i1ff |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 39 | adantlr |  | 
						
							| 41 | 40 32 | ffvelcdmd |  | 
						
							| 42 | 41 | recnd |  | 
						
							| 43 | 42 | fmpttd |  | 
						
							| 44 | 43 | ffvelcdmda |  | 
						
							| 45 |  | fveq2 |  | 
						
							| 46 | 45 | fveq1d |  | 
						
							| 47 |  | fveq2 |  | 
						
							| 48 | 47 | fveq1d |  | 
						
							| 49 | 46 48 | oveq12d |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 |  | ovex |  | 
						
							| 52 | 49 50 51 | fvmpt |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 |  | eqid |  | 
						
							| 55 |  | fvex |  | 
						
							| 56 | 46 54 55 | fvmpt |  | 
						
							| 57 |  | eqid |  | 
						
							| 58 |  | fvex |  | 
						
							| 59 | 48 57 58 | fvmpt |  | 
						
							| 60 | 56 59 | oveq12d |  | 
						
							| 61 | 60 | adantl |  | 
						
							| 62 | 53 61 | eqtr4d |  | 
						
							| 63 | 19 21 6 24 8 36 44 62 | climmul |  | 
						
							| 64 | 30 | adantr |  | 
						
							| 65 | 64 | resmptd |  | 
						
							| 66 | 27 | ffnd |  | 
						
							| 67 | 39 | ffnd |  | 
						
							| 68 |  | reex |  | 
						
							| 69 | 68 | a1i |  | 
						
							| 70 |  | inidm |  | 
						
							| 71 |  | eqidd |  | 
						
							| 72 |  | eqidd |  | 
						
							| 73 | 66 67 69 69 70 71 72 | offval |  | 
						
							| 74 | 25 37 | i1fmul |  | 
						
							| 75 |  | i1fmbf |  | 
						
							| 76 | 74 75 | syl |  | 
						
							| 77 | 73 76 | eqeltrrd |  | 
						
							| 78 | 14 | adantr |  | 
						
							| 79 |  | mbfres |  | 
						
							| 80 | 77 78 79 | syl2anc |  | 
						
							| 81 | 65 80 | eqeltrrd |  | 
						
							| 82 |  | ovex |  | 
						
							| 83 | 82 | a1i |  | 
						
							| 84 | 19 20 63 81 83 | mbflim |  | 
						
							| 85 | 18 84 | eqeltrd |  |