Metamath Proof Explorer


Theorem mbfmullem2

Description: Lemma for mbfmul . (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbfmul.1 φ F MblFn
mbfmul.2 φ G MblFn
mbfmul.3 φ F : A
mbfmul.4 φ G : A
mbfmul.5 φ P : dom 1
mbfmul.6 φ x A n P n x F x
mbfmul.7 φ Q : dom 1
mbfmul.8 φ x A n Q n x G x
Assertion mbfmullem2 φ F × f G MblFn

Proof

Step Hyp Ref Expression
1 mbfmul.1 φ F MblFn
2 mbfmul.2 φ G MblFn
3 mbfmul.3 φ F : A
4 mbfmul.4 φ G : A
5 mbfmul.5 φ P : dom 1
6 mbfmul.6 φ x A n P n x F x
7 mbfmul.7 φ Q : dom 1
8 mbfmul.8 φ x A n Q n x G x
9 3 ffnd φ F Fn A
10 4 ffnd φ G Fn A
11 3 fdmd φ dom F = A
12 mbfdm F MblFn dom F dom vol
13 1 12 syl φ dom F dom vol
14 11 13 eqeltrrd φ A dom vol
15 inidm A A = A
16 eqidd φ x A F x = F x
17 eqidd φ x A G x = G x
18 9 10 14 14 15 16 17 offval φ F × f G = x A F x G x
19 nnuz = 1
20 1zzd φ 1
21 1zzd φ x A 1
22 nnex V
23 22 mptex n P n x Q n x V
24 23 a1i φ x A n P n x Q n x V
25 5 ffvelrnda φ n P n dom 1
26 i1ff P n dom 1 P n :
27 25 26 syl φ n P n :
28 27 adantlr φ x A n P n :
29 mblss A dom vol A
30 14 29 syl φ A
31 30 sselda φ x A x
32 31 adantr φ x A n x
33 28 32 ffvelrnd φ x A n P n x
34 33 recnd φ x A n P n x
35 34 fmpttd φ x A n P n x :
36 35 ffvelrnda φ x A k n P n x k
37 7 ffvelrnda φ n Q n dom 1
38 i1ff Q n dom 1 Q n :
39 37 38 syl φ n Q n :
40 39 adantlr φ x A n Q n :
41 40 32 ffvelrnd φ x A n Q n x
42 41 recnd φ x A n Q n x
43 42 fmpttd φ x A n Q n x :
44 43 ffvelrnda φ x A k n Q n x k
45 fveq2 n = k P n = P k
46 45 fveq1d n = k P n x = P k x
47 fveq2 n = k Q n = Q k
48 47 fveq1d n = k Q n x = Q k x
49 46 48 oveq12d n = k P n x Q n x = P k x Q k x
50 eqid n P n x Q n x = n P n x Q n x
51 ovex P k x Q k x V
52 49 50 51 fvmpt k n P n x Q n x k = P k x Q k x
53 52 adantl φ x A k n P n x Q n x k = P k x Q k x
54 eqid n P n x = n P n x
55 fvex P k x V
56 46 54 55 fvmpt k n P n x k = P k x
57 eqid n Q n x = n Q n x
58 fvex Q k x V
59 48 57 58 fvmpt k n Q n x k = Q k x
60 56 59 oveq12d k n P n x k n Q n x k = P k x Q k x
61 60 adantl φ x A k n P n x k n Q n x k = P k x Q k x
62 53 61 eqtr4d φ x A k n P n x Q n x k = n P n x k n Q n x k
63 19 21 6 24 8 36 44 62 climmul φ x A n P n x Q n x F x G x
64 30 adantr φ n A
65 64 resmptd φ n x P n x Q n x A = x A P n x Q n x
66 27 ffnd φ n P n Fn
67 39 ffnd φ n Q n Fn
68 reex V
69 68 a1i φ n V
70 inidm =
71 eqidd φ n x P n x = P n x
72 eqidd φ n x Q n x = Q n x
73 66 67 69 69 70 71 72 offval φ n P n × f Q n = x P n x Q n x
74 25 37 i1fmul φ n P n × f Q n dom 1
75 i1fmbf P n × f Q n dom 1 P n × f Q n MblFn
76 74 75 syl φ n P n × f Q n MblFn
77 73 76 eqeltrrd φ n x P n x Q n x MblFn
78 14 adantr φ n A dom vol
79 mbfres x P n x Q n x MblFn A dom vol x P n x Q n x A MblFn
80 77 78 79 syl2anc φ n x P n x Q n x A MblFn
81 65 80 eqeltrrd φ n x A P n x Q n x MblFn
82 ovex P n x Q n x V
83 82 a1i φ n x A P n x Q n x V
84 19 20 63 81 83 mbflim φ x A F x G x MblFn
85 18 84 eqeltrd φ F × f G MblFn